skip to main content

A Comprehensive Overview of The Principles, Design, Operation, and Optimization of a Three-Bed TSA Dryer for Hydrogen Gas Dehydration

Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet, Bangladesh

Received: 4 Apr 2025; Revised: 14 May 2025; Accepted: 15 May 2025; Available online: 16 May 2025; Published: 30 Jun 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Dehydration of hydrogen gas is one of the important steps in many industrial purposes thus, drying systems have to be developed to achieve high efficiency and relative effect. In this article, the basic principles and design of a three-bed Temperature Swing Adsorption (TSA) dryer for dehydration operation of hydrogen gas drying are comprehensively described. The paper commences with an in-depth explanation of the basic principles behind TSA technology such as adsorption and desorption mechanisms, thermodynamic considerations and selection for adsorbents. This paper also deals with the detailed design of a three-bed TSA dryer, explaining about various fabricating details that influences both performance and overall operability. The third part focuses on the operational phase, and especially in cycle time, regeneration strategy and efficiency of energy. Advanced optimisation techniques are employed to lower energy consumption, increase throughput capacity and improve overall system performance. This detailed study will be of great help for engineers and investigators working on TSA systems design and optimization to dehydrate hydrogen gas, contributing towards the betterment in this important field dealing with industrial gas processing. Copyright © 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Temperature Swing Adsorption; hydrogen gas; dehydration; Three-Bed TSA

Article Metrics:

  1. Abdul Nasir, A.M., Rosli, M.I., Takriff, M.S., Ali Othman, N.T., Ravichandar, V. (2021) Computational Fluid Dynamics Simulation of Fluidized Bed Dryer for Sago Pith Waste Drying Process, Jurnal Kejuruteraan, 33 (2), 239–248, doi: 10.17576/jkukm-2021-33(2)-09
  2. Anisi, H., Shahhosseini, S., Fallah, A. (2022) Performance optimization of an industrial natural gas dehydration process to reduce energy consumption and greenhouse gases (GHGs) emission, Canadian Journal of Chemical Engineering, 100 (3), 476–490, doi: 10.1002/cjce.24146
  3. Barriga, R., Romero, M., Hassan, H. (2023) Machine Learning for Energy-Efficient Fluid Bed Dryer Pharmaceutical Machines, Electronics (Switzerland), 12 (20). doi: 10.3390/electronics12204325
  4. Gandhidasan, P., Al-Farayedhi, A.A., Al-Mubarak, A.A. (2001) Dehydration of natural gas using solid desiccants. Available: https://www.elsevier.com/locate/energy
  5. Du, Z., Liu, C., Zhai, J., Guo, X., Xiong, Y., Su, W., He, G. (2021). A Review of Hydrogen Purification Technologies for Fuel Cell Vehicles. Catalysts, 11(3), 393. doi: 10.3390/catal11030393
  6. Shah, M. (2021) Hydrogen Purification Technologies Overview 2021 ARPA-E Methane Pyrolysis Annual Program Review Virtual Meeting
  7. Ambrożek, B. (2009) The Simulation of Cyclic Thermal Swing Adsorption (TSA) Process. In W. Mitkowski and J. Kacprzyk (Eds.): Modelling Dynamics in Processes and Systems, pp. 165 – 178
  8. Worku, A.K., Ayele, D.W., Deepak, D.B., Gebreyohannes, A.Y., Agegnehu, S.D. and Kolhe, M.L. (2024), Recent Advances and Challenges of Hydrogen Production Technologies via Renewable Energy Sources. Adv. Energy Sustainability Res., 5, 2300273. doi: 10.1002/aesr.202300273
  9. Król, A., Gajec, M., Holewa-Rataj, J., Kukulska-Zając, E., Rataj, M. (2024). Hydrogen Purification Technologies in the Context of Its Utilization. Energies, 17(15), 3794. doi; 10.3390/en17153794
  10. Krótki, A., Bigda, J., Spietz, T., Ignasiak, K., Matusiak, P., Kowol, D. (2025). Performance Evaluation of Pressure Swing Adsorption for Hydrogen Separation from Syngas and Water–Gas Shift Syngas. Energies, 18(8), 1887. doi: 10.3390/en18081887
  11. Borzone, E.M., Baruj, A., Meyer, G.O. (2017) Design and operation of a hydrogen purification prototype based on metallic hydrides, J. Alloys Compd., 695, 2190–2198. doi: 10.1016/j.jallcom.2016.11.067
  12. Vogtenhuber, H., Pernsteiner, D., Hofmann, R. (2019). Experimental and Numerical Investigations on Heat Transfer of Bare Tubes in a Bubbling Fluidized Bed with Respect to Better Heat Integration in Temperature Swing Adsorption Systems. Energies, 12(14), 2646. doi: 10.3390/en12142646
  13. Berg, F., Pasel, C., Eckardt, T., Bathen, D. (2019), Temperature Swing Adsorption in Natural Gas Processing: A Concise Overview. ChemBioEng Reviews, 6, 59-71. doi: 10.1002/cben.201900005
  14. Pahinkar, D.G., Garimella, S., Robbins, T.R. (2017) Feasibility of Temperature Swing Adsorption in Adsorbent-Coated Microchannels for Natural Gas Purification, Ind. Eng. Chem. Res., 56 (18), 5403–5416, doi: 10.1021/acs.iecr.7b00389
  15. Amantea, R.P., Sarri, D., Rossi, G. (2024) A system dynamic modeling to evaluate fluidized bed dryers under tempering and recirculation strategies, Applied Chemical Engineering, 7 (1), 2024, doi: 10.24294/ace.v7i1.3276
  16. Melo, C.R., Riella, H.G., Kuhnen, N.C., Angioletto, E., Melo, E.R., Bernardin, A.M., da Rocha, M.R., da Silva, L. (2012) Synthesis of 4A zeolites from kaolin for obtaining 5A zeolites through ionic exchange for adsorption of arsenic, Materials Science and Engineering: B, 177(4), 345-349, doi: 10.1016/j.mseb.2012.01.015
  17. Anderson, G., Schweitzer, B., Anderson, R., Gómez-Gualdrón, D.A. (2019) Attainable Volumetric Targets for Adsorption-Based Hydrogen Storage in Porous Crystals: Molecular Simulation and Machine Learning, Journal of Physical Chemistry C, 123 (1), 120–130, doi: 10.1021/acs.jpcc.8b09420
  18. Atuonwu, J.C., van Straten, G., van Deventer, H.C., van Boxtel, A.J.B. (2012) A Mixed Integer Formulation for Energy-efficient Multistage Adsorption Dryer Design, Drying Technology, 30 (8), 873–883, doi: 10.1080/07373937.2012.674996
  19. Luthra, K., Sadaka, S.S. (2020) Challenges and opportunities associated with drying rough rice in fluidized bed dryers: A review, Transactions of the ASABE. 63(3), 583-595. doi: 10.13031/TRANS.13760
  20. Zanco, S.E., Mazzotti, M., Gazzani, M., Romano, M.C., Martínez, I. (2018) Modeling of circulating fluidized beds systems for post-combustion CO2 capture via temperature swing adsorption, AIChE Journal, 64 (5), 1744–1759, doi: 10.1002/aic.16029
  21. Kalita Pankaj, J.T.D.S. (2018) Design, development and performance evaluation of a fluidized bed paddy dryer. Journal of Energy and Environmental Sustainability, 6, 18-23
  22. Raganati, F., Chirone, R., Ammendola, P. (2020) CO2 Capture by Temperature Swing Adsorption: Working Capacity As Affected by Temperature and CO2 Partial Pressure, Ind. Eng. Chem. Res., 59 (8), 3593–3605, doi: 10.1021/acs.iecr.9b04901
  23. Li, H., Liao, Z., Sun, J., Jiang, B., Wang, J., Yang, Y. (2020) Simultaneous Design of Hydrogen Allocation Networks and PSA Inside Refineries, Ind. Eng. Chem. Res., 59 (10), 4712–4720, doi: 10.1021/acs.iecr.9b06955
  24. Risco-Bravo, A., Varela, C., Bartels, J., & Zondervan, E. (2024). From green hydrogen to electricity: A review on recent advances, challenges, and opportunities on power-to-hydrogen-to-power systems. Renewable and Sustainable Energy Reviews, 189(Part A), 113930. doi: 10.1016/j.rser.2023.113930
  25. Il Yang, S., Choi, D.Y., Jang, S.C., Kim, S.H., Choi, D.K. (2008) Hydrogen separation by multi-bed pressure swing adsorption of synthesis gas, Adsorption, 14 (4–5), 583–590, doi: 10.1007/s10450-008-9133-x
  26. Kwon, S., Eom, S., Yang, J.-S., Choi, G. (2023). Development of an In-House Code for Dry Tower of Heat Transfer Analysis in Hydrogen Purification System. Energies, 16(13), 5090. doi: 10.3390/en16135090
  27. Besancon, B.M., Hasanov, V., Imbault-Lastapis, R., Benesch, R., Barrio, M., Mølnvik, M.J. (2009) Hydrogen quality from decarbonized fossil fuels to fuel cells, Int. J. Hydrogen Energy, 34 (5), 2350–2360, doi: 10.1016/j.ijhydene.2008.12.071
  28. Barriga, R., Romero, M., Hassan, H., Nettleton, D.F. (2023) Energy Consumption Optimization of a Fluid Bed Dryer in Pharmaceutical Manufacturing Using EDA (Exploratory Data Analysis), Sensors, 23 (8), doi: 10.3390/s23083994
  29. Li, C., Li, B., Huang, J., Li, C. (2020) Energy and exergy analyses of a combined infrared radiation-counterflow circulation (IRCC) corn dryer, Applied Sciences (Switzerland), 10 (18), doi: 10.3390/APP10186289
  30. Golmakani, A., Fatemi, S., Tamnanloo, J. (2016) CO2 Capture from the Tail Gas of Hydrogen Purification Unit by Vacuum Swing Adsorption Process, Using SAPO-34, Ind. Eng. Chem. Res., 55(1), 334–350, doi: 10.1021/acs.iecr.5b02690
  31. Liang, X., Kang, L., Liu, Y. (2016) The Flexible Design for Optimization and Debottlenecking of Multiperiod Hydrogen Networks, Ind. Eng. Chem. Res., 55 (9), 2574–2583, doi: 10.1021/acs.iecr.5b04120
  32. Al-Sobhi, S.A., Elkamel, A., Erenay, F.S., Shaik, M.A. (2018). Simulation-Optimization Framework for Synthesis and Design of Natural Gas Downstream Utilization Networks. Energies, 11(2), 362. doi: 10.3390/en11020362
  33. Susan, N., Awichi, R.O., Kadedesya, S., Oyem, A.O. (2023) Application of Computational Fluid Dynamics in Simulation and Optimization of a Fluidized Sugar Bed Dryer, WSEAS Transactions on Heat and Mass Transfer, 18, 286–295, doi: 10.37394/232012.2023.18.25
  34. Cabral, R.A.F., Telis-Romero, J., Telis, V.R.N., Gabas, A.L., Finzer, J.R.D. (2007) Effect of apparent viscosity on fluidized bed drying process parameters of guava pulp, J. Food Eng., 80 (4), 1096–1106, doi: 10.1016/j.jfoodeng.2006.09.002
  35. Jiang, L., Biegler, L.T., Fox, V.G. (2003) Design and Optimization of Pressure Swing Adsorption Systems with Parallel Implementation, Computer Aided Chemical Engineering, 15, 232-237, doi: 10.1016/S1570-7946(03)80549-7
  36. Pahinkar, D.G., Garimella, S. (2018) A novel temperature swing adsorption process for natural gas purification: Part I, model development, Sep. Purif. Technol., 203, 124–142, doi: 10.1016/j.seppur.2018.04.020
  37. Ko, D., Moon, I., Choi, D.K. (2002 Analysis of the contact time in a cyclic thermal swing adsorption process, Ind. Eng. Chem. Res., 41 (6), 1603–1615, doi: 10.1021/ie010430d
  38. Hernández-Domínguez, E.A. (2023) Optimizing solar dryer design: A multicriteria decision making approach for hybrid systems, Revista del Diseño Innovativo, 1–8, doi: 10.35429/jid.2023.17.7.1.8
  39. Xu, Z., Cai, Jg., Pan, Bc. (2013) Mathematically modeling fixed-bed adsorption in aqueous systems. J. Zhejiang Univ. Sci. A, 14, 155–176, doi: 10.1631/jzus.A1300029
  40. Tagliabue, M., Delnero, G. (2008) Optimization of a hydrogen purification system, Int. J. Hydrogen Energy, 33 (13), 3496–3498, doi: 10.1016/j.ijhydene.2008.04.055
  41. Brigagão, G.V., de O. Arinelli, L., de Medeiros, J. L., Araújo, O.Q.F. (2019) A new concept of air pre-purification unit for cryogenic separation: Low-pressure supersonic separator coupled to finishing adsorption, Sep. Purif. Technol., 215, 173–189, doi: 10.1016/j.seppur.2019.01.015
  42. Kemper, J., Sutherland, L., Watt, J., Santos, S. (2014) Evaluation and analysis of the performance of dehydration units for CO2 capture, Energy Procedia, 7568–7584. doi: 10.1016/j.egypro.2014.11.792
  43. Marx, D., Joss, L., Hefti, M., Mazzotti, M. (2016) Temperature Swing Adsorption for Postcombustion CO2 Capture: Single- and Multicolumn Experiments and Simulations, Ind. Eng. Chem. Res., 55 (5), 1401–1412, doi: 10.1021/acs.iecr.5b03727
  44. Netusil, M., Ditl, P. (2012) Natural Gas Dehydration, in (Editor: S.B.Gupta) Natural Gas - Extraction to End Use, InTech, doi: 10.5772/45802
  45. Al Wahedi, Y., Rabie, A.H., Al Shaiba, A., Geuzebroek, F., Daoutidis, P. (2016) Optimization of Adsorption-Based Natural Gas Dryers, Ind. Eng. Chem. Res., 55 (16), 4658–4667, doi: 10.1021/acs.iecr.6b00374
  46. Capra, F., Gazzani, M., Joss, L., Mazzotti, M., Martelli, E. (2018) MO-MCS, a derivative-free algorithm for the multiobjective optimization of adsorption processes, Industrial & Engineering Chemistry Research, 57(30), 9977-9993. doi: 10.1021/acs.iecr.8b00207
  47. Joss, L., Hefti, M., Bjelobrk, Z., Mazzotti, M. (2017) (2017) On the Potential of Phase-change Adsorbents for CO2 Capture by Temperature Swing Adsorption, Energy Procedia, 2271–2278. doi: 10.1016/j.egypro.2017.03.1375
  48. Yang, Y., Chen, Y., Xu, Z., Wang, L., Zhang, P. (2020) A three-bed six-step TSA cycle with heat carrier gas recycling and its model-based performance assessment for gas drying, Sep. Purif. Technol., 237, doi: 10.1016/j.seppur.2019.116335
  49. Raji, N.A., Kuku, R.O., Ajetunmobi, Q.A. (2024) Design and Fabrication of a 300kg Capacity Fish Oven, International Journal of Research and Review, 11 (5), 385–396, doi: 10.52403/ijrr.20240545
  50. Murphy, O.P., Vashishtha, M., Palanisamy, P., Kumar, K.V. (2023) A Review on the Adsorption Isotherms and Design Calculations for the Optimization of Adsorbent Mass and Contact Time, ACS Omega, 8 (20), 17407–17430. doi: 10.1021/acsomega.2c08155
  51. He, F., Li, H., Li, L.H., Li, Y.M., Wang, H.T. (2013) Analysis of coke oven gas dehydration technology for vehicles, Advanced Materials Research, 1306–1310. doi: 10.4028/www.scientific.net/AMR.805-806.1306
  52. Ahn, H., Lee, C.-H. (2003) Adsorption Dynamics of Water in Layered Bed for Air-Drying TSA Process, Separations, 49 (6), 1601-1609, doi: 10.1002/aic.690490623
  53. Benjamin, O.E., Stephen, A.A., Onyewuchi, E., Uchenna, N. (2022) Design and Analysis of Energy and Exergy Performance of an LPG-Powered Fish Drying Machine, Jurnal Kejuruteraan, 34(1), 117–129, doi: 10.17576/jkukm-2022-34(1)-11
  54. Zhou, Z., Langrish, T. A. G., Cai, S. (2023). Using Particle Residence Time Distributions as an Experimental Approach for Evaluating the Performance of Different Designs for a Pilot-Scale Spray Dryer. Processes, 11(1), 40. doi: 10.3390/pr11010040
  55. Waghmare, R.B., Choudhary, P., Moses, J.A., Anandharamakrishnan, C., Stapley, A.G.F. (2021). Trends in Approaches to Assist Freeze-Drying of Food: A Cohort Study on Innovations. Food Reviews International, 38(sup1), 552–573. doi: 10.1080/87559129.2021.1875232
  56. Liu, Y., Peng, J., Kansha, Y., Ishizuka, M., Tsutsumi, A., Jia, D., Bi, X.T., Lim, C.J., Sokhansanj, S. (2014) Novel fluidized bed dryer for biomass drying, Fuel Processing Technology, 122, 170–175, doi: 10.1016/j.fuproc.2014.01.036
  57. Azani, Y., Armila, A., Arief, R.K. (20220 Modeling of Hot Oil Leakage Aat Regeneration Gas Heater Oon Dehydration Process Of Natural Gas Liquified Extraction (NGLE) Gas Plant, Rang Teknik Journal, 5 (1), 144–150, doi: 10.31869/rtj.v5i1.2928
  58. Elfving, J., Bajamundi, C., Kauppinen, J., Sainio, T. (2017) Modelling of equilibrium working capacity of PSA, TSA and TVSA processes for CO2 adsorption under direct air capture conditions, Journal of CO2 Utilization, 22, 270–277, doi: 10.1016/j.jcou.2017.10.010
  59. Wang, Y. (2020) Measurements and Modeling of Water Adsorption Isotherms of Zeolite Linde-Type A Crystals, Ind. Eng. Chem. Res., 59 (17), 8304–8314, doi: 10.1021/acs.iecr.9b06891
  60. Aleghafouri, A., Davoudi, M. (2018) Modeling and simulation of a pressure–temperature swing adsorption process for dehydration of natural gas, Adsorption, 24 (1), 121–133, doi: 10.1007/s10450-017-9924-z
  61. Atuonwu, J.C., Van Straten, G., Van Deventer, H.C., Van Boxtel, A.J.B. (2011) Model-Based Energy Efficiency Optimization of a Low-Temperature Adsorption Dryer, Chem. Eng. Technol., 34 (10), 1723–1732, doi: 10.1002/ceat.201100145
  62. Ntiamoah, A., Ling, J., Xiao, P., Webley, P.A., Zhai, Y. (2016) CO2 Capture by Temperature Swing Adsorption: Use of Hot CO2-Rich Gas for Regeneration, Ind. Eng. Chem. Res., 55 (3), 703–713, doi: 10.1021/acs.iecr.5b01384
  63. Bari, H.A.A., Halim, A., Mohammed, A.K., Shua’ab, A.K.M., Bin, R., Yunus, M. (2008) Equilibrium Adsorption of Hydrogen and Methane on 5A Molecular Sieve, American Journal of Engineering and Applied Sciences, 1 (2), 157–160, doi: 10.3844/ajeassp.2008.157.160
  64. Latour, R.A. (2015) The Langmuir isotherm: A commonly applied but misleading approach for the analysis of protein adsorption behavior, J. Biomed. Mater. Res. A, 103 (3), 949–958, doi: 10.1002/jbm.a.35235
  65. Lei, M., Vallieres, C., Grevillot, G., Latifi, M.A. (2013) Thermal swing adsorption process for carbon dioxide capture and recovery: Modeling, simulation, parameters estimability, and identification, Ind. Eng. Chem. Res., 52 (22), 7526–7533, doi: 10.1021/ie3029152
  66. Do, D. (1998) Duong, Adsorption Analysis : Equilibria and Kinetics. Imperial College Press
  67. Koros, W., Kumar, S., Woodruff, G.W. (2016) Temperature Swing Adsorption Processes for Gas Separation, Thesis, Georgia Institute of Technology
  68. Sircar, S. (2017) Comments on practical use of Langmuir gas adsorption isotherm model, Adsorption, 23 (1), 121–130, doi: 10.1007/s10450-016-9839-0
  69. Ghanbari, S., Niu, C.H. (2019) Equilibria of lignocellulose biosorbents for gas dehydration, Sep. Purif. Technol., 227, 115668, doi: 10.1016/j.seppur.2019.06.006
  70. Glueckauf, E. (1955) Theory of chromatography: Part 10. - Formula for diffusion into spheres and their application to chromatography, Transactions of the Faraday Society, 51, 1540–1551, doi: 10.1039/TF9555101540
  71. Ribeiro, R.P.P.L., Grande, C.A., Rodrigues, A.E. (2011) Adsorption of water vapor on carbon molecular sieve: Thermal and electrothermal regeneration study, Ind. Eng. Chem. Res., 50 (4), 2144–2156, doi: 10.1021/ie101133g
  72. Setty, Y.P., Yogendrasasidhar, D., Siva, M. (2021) Linear Identification and Design of Optimal Controller for Multistage Fluidized Bed Dryer, Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 91 (3), 587–596, doi: 10.1007/s40010-020-00703-y
  73. Banaszkiewicz, T. (2021) The possible coupling of LNG regasification process with the TSA method of oxygen separation from atmospheric air, Entropy, 23 (3), doi: 10.3390/e23030350
  74. Joss, L., Gazzani, M., Hefti, M., Marx, D., Mazzotti, M. (2015) Temperature swing adsorption for the recovery of the heavy component: An equilibrium-based shortcut model, Ind. Eng. Chem. Res., 54 (11), 3027–3038, doi: 10.1021/ie5048829
  75. Zhang, P., Wang, L. (2013) Numerical analysis on the performance of the three-bed temperature swing adsorption process for air prepurification, Ind. Eng. Chem. Res., 52 (2), 885–898, doi: 10.1021/ie302166z
  76. Jiang, L., Roskilly, A.P., Wang, R.Z. (2018) Performance exploration of temperature swing adsorption technology for carbon dioxide capture, Energy Convers. Manag., 165, 396–404, doi: 10.1016/j.enconman.2018.03.077
  77. Danışmaz, M. (2024) Investigation of the Effect of Duct Geometry on Drying Air Flow in Conventional Grain Dryers by Porous Media Approach, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 36 (1), 61–71, doi: 10.35234/fumbd.1338087
  78. Apriansa, F., Irawan, R. (2024) Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa Dan Inovasi Optimization of Dehumidification Air Flow Distribution in Temulawak Tray Dryer with Computational Fluid Dynamics Optimasi Distribusi Aliran Udara Dehumidifikasi pada Pengering Temulawak Tipe Tray dengan Computational Fluid Dynamics, Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa Dan Inovasi, 6 (2), 327–340, doi: 10.35814/asiimetrik.v6i2.6664
  79. Visconcini, A.R., Gonçalves Andrade, C.M., De Souza Costa, A.M. (2021) Fluid flow simulation of industrial fixed bed mixed-flow grain dryer using k-ω sst turbulence model, International Journal of Agricultural and Biological Engineering, 14 (2), 226–230, doi: 10.25165/J.IJABE.20211402.5321
  80. Dunikov, D., Borzenko, V., Blinov, D., Kazakov, A., Lin, C.-Y., Wu, S.-Y., Chu, C.-Y. (2016) Biohydrogen purification using metal hydride technologies, Int. J. Hydrogen Energy, 41 (46), 21787–21794, doi: 10.1016/j.ijhydene.2016.08.190
  81. Nastaj, J., Ambrozek, B. (2015) Analysis of gas dehydration in TSA system with multi-layered bed of solid adsorbents, Chemical Engineering and Processing: Process Intensification, 96, 44–53, doi: 10.1016/j.cep.2015.08.001
  82. Chilka, A.G., Ranade, V.V. (2019) CFD modelling of almond drying in a tray dryer, Canadian Journal of Chemical Engineering, 97 (2), 560–572, doi: 10.1002/cjce.23357
  83. Chowanietz, V., Pasel, C., Luckas, M., Eckardt, T., Bathen, D. (2017) Desorption of mercaptans and water from a silica-alumina gel, Ind. Eng. Chem. Res., 56 (2), 614–621, doi: 10.1021/acs.iecr.6b04150
  84. Yang, Y., Zhang, P., Wang, L. (2018) Parametric analysis of thermal-pulse regeneration of activated alumina in temperature swing adsorption process used for gas dehydration, Appl. Therm. Eng., 141, 762–774, doi: 10.1016/j.applthermaleng.2018.06.026
  85. Baykara, S.Z. (2004) Hydrogen production by direct solar thermal decomposition of water, possibilities for improvement of process efficiency, Int. J. Hydrogen Energy, 29 (14), 1451–1458, doi: 10.1016/j.ijhydene.2004.02.014
  86. Vavro, M.E. (1996) Minimizing Natural Gas Dehydration Costs With Proper Selection of Dry Bed Desiccants and New Dryer Technology, SPE Eastern Regional Meeting, Oct. 1996, doi: 10.2118/37348-MS
  87. Sawardsuk, P., Jongyingcharoen, J.S., Cheevitsopon, E. (2020) Evaluation of cyclic efficiency of multilayer desiccant bed column, E3S Web of Conferences, Sep. 2020. doi: 10.1051/e3sconf/202018704018
  88. Yrjölä, J., Saastamoinen, J.J. (2022) Modelling and Practical Operation Results of A Dryer for Wood Chips, Drying Technology, 20 (6), 1077–1099, doi: 10.1081/DRT-120004041
  89. Design Principles of Heated Compressed Air Dryers - Van Air Systems. Accessed: May 04, 2025. Available: https://www.vanairsystems.com/design-principles-of-heated-compressed-air-dryers/
  90. Fu, H.X., Yang, Q.R., Zhang, L.Z. (2017) Effects of material properties on heat and mass transfer in honeycomb-type adsorbent wheels for total heat recovery, Appl. Therm. Eng., 118, 345–356, doi: 10.1016/j.applthermaleng.2017.03.006
  91. Tsai, H.Y., Wu, C.T. (2022) Optimization of a rotary desiccant wheel for enthalpy recovery of air-conditioning in a humid hospitality environment, Heliyon, 8 (10), doi: 10.1016/j.heliyon.2022.e10796
  92. Kozlov, V.V., Piskun, E.S., Ilicheva, O.S. (2020) Investigation of the processes of adsorbent regeneration by compression heat in an adsorption dryer of compressed air, MATEC Web of Conferences, 324, 02009, doi: 10.1051/matecconf/202032402009
  93. Iwai, Y., Yamanishi, T., Nishi, M., Suzuki, Y., Kurita, K., Shimazaki, M. (2005) Application of Pressure Swing Adsorption to Water Detritiation Process, J. Nucl. Sci. Technol., 42 (6), 566–572, doi: 10.3327/jnst.42.566
  94. Dobrotvorskiy, S., Dobrovolska, L., Basova, Y., Aleksenko, B. (2019) Particulars of adsorbent regeneration with the use of microwave energy, Acta Polytechnica, 59 (1), 12–23, doi: 10.14311/AP.2019.59.0012
  95. Moheno-Barrueta, M., Tzuc, O.M., Martínez-Pereyra, G., Cardoso-Fernández, V., Rojas-Blanco, L., Ramírez-Morales, E., Pérez-Hernández, G., Bassam, A. (2021). Experimental Evaluation and Theoretical Optimization of an Indirect Solar Dryer with Forced Ventilation under Tropical Climate by an Inverse Artificial Neural Network. Applied Sciences, 11(16), 7616, doi: 10.3390/app11167616
  96. Anisi, H., Shahhosseini, S., Fallah, A. (2022) Performance optimization of an industrial natural gas dehydration process to reduce energy consumption and greenhouse gases (GHGs) emission, Canadian Journal of Chemical Engineering, 100 (3), 476–490, doi: 10.1002/cjce.24146
  97. Fatouh, M., Abou-Ziyan, H., Mahmoud, O., Abd El-Raheim, D. (2017) Experimental analysis of hybrid and conventional air conditioning systems working in hot-humid climate, Appl. Therm. Eng., 118, 570–584, doi: 10.1016/j.applthermaleng.2017.03.019
  98. Alam, S., Khan, M.Y.N., Das, A., Koushik, M.R.H., Shuvo, M.R.A., Das, T. (2023) Impact of green technologies on the production of hydrogen in a sustainable manner, International Journal of Science and Research Archive, 10 (1), 106–112, doi: 10.30574/ijsra.2023.10.1.0716
  99. Wynnyk, K.G., Hojjati, B., Marriott, R.A. (2019) Sour Gas and Water Adsorption on Common High-Pressure Desiccant Materials: Zeolite 3A, Zeolite 4A, and Silica Gel, J. Chem. Eng. Data, 64 (7), 3156–3163, doi: 10.1021/acs.jced.9b00233
  100. Areán, C.O., Nachtigallová, D., Nachtigall, P., Garrone, E., Delgado, M.R. (2007) Thermodynamics of reversible gas adsorption on alkali-metal exchanged zeolites - The interplay of infrared spectroscopy and theoretical calculations, Physical Chemistry Chemical Physics, 9 (12), 1421–1437, doi: 10.1039/b615535a
  101. Zhong, D.C., Zhang, W.X., Cao, F.L., Jiang, L., Lu, T.B. (2011) A three-dimensional microporous metal-organic framework with large hydrogen sorption hysteresis, Chemical Communications, 47 (4), 1204–1206, doi: 10.1039/c0cc03506h
  102. Saha, D., Grappe, H.A., Chakraborty, A., Orkoulas, G. (2016) Postextraction Separation, On-Board Storage, and Catalytic Conversion of Methane in Natural Gas: A Review, Chemical Reviews, 116 (19), 11436–11499, doi: 10.1021/acs.chemrev.5b00745
  103. Darkrim, F.L., Levesque, D. (2022) Environmental application of surface reactivity analysis, Surface and Interface Analysis, 97–99. doi: 10.1002/sia.1261
  104. Zhou, L., Lü, C.Z., Bian, S.J., Zhou, Y.P. (2002) Pure hydrogen from the dry gas of refineries via a novel pressure swing adsorption process, Ind. Eng. Chem. Res., 41 (21), 5290–5297, doi: 10.1021/ie020043j
  105. Christy, A.A. (2016) Water adsorption properties of free and dehydrated β-cyclodextrin studied by near infrared spectroscopy and gravimetry, Key Engineering Materials, 143–147. doi: 10.4028/www.scientific.net/KEM.689.143
  106. Akhtiamov, A., Konovalova, K., Kurochkin, A. (2015) Young Professionals session of the SPE Russian Petroleum Technology Conference
  107. Schunk, R., Knox, J., Coker, R.F. (2014) Direct Modeling of Packed Bed Channeling
  108. Hill, F.B., Grfezic, V. (1983) Cascades for Hydrogen Isotope Separation Using Metal Hydrides, Journal of the Less Common Metals, 89 (2), 399–405
  109. Soo, X.Y.D., Lee, J.J.C., Wu, W.-Y., Tao, L., Wang, C., Zhu, Q., Bu, J. (2024) Advancements in CO2 capture by absorption and adsorption: A comprehensive review, Journal of CO2 Utilization, 81, 102727, doi: 10.1016/j.jcou.2024.102727
  110. Liu, G., Zhu, L., Hong, J., Liu, H. (2022) Technical, Economical, and Environmental Performance Assessment of an Improved Triethylene Glycol Dehydration Process for Shale Gas, ACS Omega, 7 (2), 1861–1873, doi: 10.1021/acsomega.1c05236
  111. Zerobin, F., Pröll, T. (2020) Concentrated carbon dioxide (CO2) from diluted sources through continuous temperature swing adsorption (TSA), Ind. Eng. Chem. Res., 59 (19), 9207–9214, doi: 10.1021/acs.iecr.9b06177
  112. Meloni, E., Martino, M., Pullumbi, P., Brandani, F., Palma, V. (2021) Intensification of TSA processes using a microwave-assisted regeneration step, Chemical Engineering and Processing - Process Intensification, 160, doi: 10.1016/j.cep.2020.108291
  113. Wang, S., Xie, R., Liu, J., Zhao, P., Liu, H., Wang, X. (2023) Numerical Analysis of The Temperature Characteristics of a Coal—Supercritical Water-Fluidized Bed Reactor for Hydrogen Production, Machines, 11(5), doi: 10.3390/machines11050546
  114. Faria, C., Rocha, C., Miguel, C., Rodrigues, A., Madeira, L.M. (2025) Process intensification concepts for CO2 methanation − A review, Fuel, 386, 13426, doi: 10.1016/j.fuel.2024.134269
  115. Mehmeti, A., Angelis-Dimakis, A., Arampatzis, G., McPhail, S.J., Ulgiati, S. (2018) Life cycle assessment and water footprint of hydrogen production methods: From conventional to emerging technologies, Environments, 5 (2), 1–19, doi: 10.3390/environments5020024

Last update:

No citation recorded.

Last update:

No citation recorded.