skip to main content

Improving Yield Conversion with Triple Conversion Reactor for Styrene Production from Ethylbenzene

Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, 50275, Indonesia

Received: 19 Dec 2024; Revised: 25 Dec 2024; Accepted: 27 Dec 2024; Available online: 20 Jan 2025; Published: 30 Jun 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Styrene is a critical component in various polymer-based materials, with increasing global demand. Its production primarily involves the catalytic dehydrogenation of ethylbenzene, a process requiring high temperatures and facing challenges like by-product formation. This research aims to enhance the yield conversion of styrene using a triple conversion reactor system. The methodology employs Aspen HYSYS simulation, with thermodynamic considerations guiding the reactor designs and operating conditions. Results indicate that implementing three reactors increased the conversion rate from 96% to 99.9% and achieved 99.5% styrene purity. The study concludes that process optimization significantly improves the efficiency and scalability of industrial styrene production. Copyright © 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Styrene; Etilbenzene; Dehydrogenation; Process modification; Improving Yield

Article Metrics:

  1. Sanchez, A., P., and Silva, R., M., S. (2017). Simulation of The Styrene Production Process Via Catalytic Dehydrogenation of Etylbenzene Using CHEMCAD Process Simulator, Tecnura Journal. 21 (53). 15-31
  2. Dimian, A. C., & Bildea, C. S. (2019). Energy efficient styrene process: design and plantwide control. Industrial & Engineering Chemistry Research, 58(12), 4890-4905. http://dx.doi.org/10.1021/acs.iecr.8b05560
  3. Syafiq, M. A., Ihsan, M., Prisilia, A., Nugraha, B. P., & Sari, T. I. (2019). Modifikasi karet alam dengan monomer stirena sebagai bahan intermediet pada aplikasi produk karet. Applicable Innovation of Engineering and Science Research (AVoER), 58-66
  4. Ali, E., & Hadj-Kali, M. (2018). Energy efficiency analysis of styrene production by adiabatic ethylbenzene dehydrogenation using exergy analysis and heat integration. Polish Journal of Chemical Technology, 20(1), 35-46. https://doi.org/10.2478/pjct-2018-0006
  5. Behr, A. (2017). Styrene production from ethyl benzene. Retrieved July, 13, 2017
  6. Tang, W., Hemm, I., & Eisenbrand, G. (2000). Estimation of human exposure to styrene and ethylbenzene. Toxicology, 144(1-3), 39-50. https://doi.org/10.1016/S0300-483X(99)00188-2
  7. Qin, Z., Liu, J., Sun, A., & Wang, J. (2003). Reaction coupling in the new processes for producing styrene from ethylbenzene. Industrial & engineering chemistry research, 42(7), 1329-1333. https://doi.org/10.1021/ie020762y
  8. Webb, G. A., & Corson, B. B. (1947). Pyrolytic Dehydrogenation of Ethylbenzene to Styrene. Industrial & Engineering Chemistry, 39(9), 1153-1156. https://doi.org/10.1021/ie50453a020
  9. Brooks, K. P., Bowden, M. E., Karkamkar, A. J., Houghton, A. Y., & Autrey, S. T. (2016). Coupling of exothermic and endothermic hydrogen storage materials. Journal of Power Sources, 324, 170-178. https://doi.org/10.1016/j.jpowsour.2016.05.067
  10. Mimura, N., & Saito, M. (2000). Dehydrogenation of ethylbenzene to styrene over Fe2O3/Al2O3 catalysts in the presence of carbon dioxide. Catalysis today, 55(1-2), 173-178. https://doi.org/10.1016/S0920-5861(99)00236-9
  11. Speight, J.G. (2002). Chemical and Process Design Handbook, McGraw-Hill, New York
  12. Carra, S., & Forni, L. (1965). Kinetics of catalytic dehydrogenation of ethylbenzene to styrene. Industrial & Engineering Chemistry Process Design and Development, 4(3), 281-285. https://doi.org/10.1021/i260015a009
  13. Yaws, C. L. (1999). Chemical properties handbook: physical, thermodynamic, environmental, transport, safety, and health related properties for organic and inorganic chemicals. McGraw-Hill, New York
  14. Gupta, R., Uslu, H., & Majumder, S. (2022). Production of styrene from dehydrogenation of ethylbenzene. Chemical Engineering & Technology, 45(5), 817-823. https://doi.org/10.1002/ceat.202100577
  15. Parra-Santiago, J. J., Guerrero-Fajardo, C. A., & Sodré, J. R. (2015). Distillation process optimization for styrene production from a styrene-benzene-toluene system in a Petlyuk column. Chemical Engineering and Processing: Process Intensification, 98, 106-111. https://doi.org/10.1016/j.cep.2015.10.017
  16. Li, Y., Rangaiah, G. P., & Ray, A. K. (2003). Optimization of styrene reactor design for two objectives using a genetic algorithm. International Journal of Chemical Reactor Engineering, 1(1), 20121020. https://doi.org/10.2202/1542-6580.1013
  17. Fedotov, А. S., Uvarov, V. I., Tsodikov, M. V., Paul, S., Simon, P., Marinova, M., & Dumeignil, F. (2021). Production of styrene by dehydrogenation of ethylbenzene on a [Re, W]/γ-Al2O3 (K, Ce)/α-Al2O3 porous ceramic catalytic converter. Chemical Engineering and Processing-Process Intensification, 160, 108265. https://doi.org/10.1016/j.cep.2020.108265
  18. Leite, B., da Costa, A. O. S., & da Costa Junior, E. F. (2021). Simulation and optimization of axial-flow and radial-flow reactors for dehydrogenation of ethylbenzene into styrene based on a heterogeneous kinetic model. Chemical Engineering Science, 244, 116805. https://doi.org/10.1016/j.ces.2021.116805
  19. Kartik, S., Balsora, H. K., Sharma, M., Saptoro, A., Jain, R. K., Joshi, J. B., & Sharma, A. (2022). Valorization of plastic wastes for production of fuels and value-added chemicals through pyrolysis–A review. Thermal Science and Engineering Progress, 32, 101316. https://doi.org/10.1016/j.tsep.2022.101316
  20. Li, X., Cui, C., Li, H., & Gao, X. (2019). Process synthesis and simulation-based optimization of ethylbenzene/styrene separation using double-effect heat integration and self-heat recuperation technology: A techno-economic analysis. Separation and Purification Technology, 228, 115760. https://doi.org/10.1016/j.seppur.2019.115760
  21. Bricker, J. C. (2012). Advanced catalytic dehydrogenation technologies for production of olefins. Topics in Catalysis, 55(19), 1309-1314
  22. Kirk-Othmer. (1992). Encyclopedia of Chemical Technology, Edition, Vol.23, Chapter “Styrene”, pages 334-347, Wiley-Interscience, New York
  23. Javaid, A., & Bildea, C. S. (2018). Coupling exothermic and endothermic reactions—A pplication to combined aniline production/methyl‐cyclohexane dehydrogenation. Asia‐Pacific Journal of Chemical Engineering, 13(4), e2210. https://doi.org/10.1016/j.jpowsour.2016.05.067
  24. Pérez-Sánchez, A., Sánchez, E. J. P., & Segura Silva, R. M. (2017). Simulation of the styrene production process via catalytic dehydrogenation of ethylbenzene using CHEMCAD® process simulator. Tecnura, 21(53), 15-31. https://doi.org/10.14483/22487638.11499
  25. Michaels, J. N., & Vayenas, C. G. (1984). Styrene production from ethylbenzene on platinum in a zirconia electrochemical reactor. Journal of the Electrochemical Society, 131(11), 2544. DOI 10.1149/1.2115356
  26. Miller, R. R., Newhook, R., & Poole, A. (1994). Styrene production, use, and human exposure. Critical reviews in toxicology, 24(sup1), S1-S10

Last update:

No citation recorded.

Last update:

No citation recorded.