skip to main content

Improving 1,2-Ethylene Dichloride Yield and Purity with Reducing Carbon Emissions from Ethylene through Waste Treatment Method Modification

Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, 50275, Indonesia

Received: 19 Dec 2024; Revised: 27 Dec 2024; Accepted: 27 Dec 2024; Available online: 8 Jan 2025; Published: 30 Jun 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

1,2-ethylenedichloride (EDC) is a chemical compound used widely in industry. This study aims to develop a modified process for EDC production through direct chlorination and oxychlorination methods to improve mass efficiency, establish an environmentally friendly plant, and produce high purity products. Conceptual process simulation was conducted using Aspen HYSYS, with energy consumption and carbon emission analysis using Aspen Energy Analyzer. Process modifications included a new separation system incorporating a flash drum separator, liquid-liquid extraction, and reboiled absorber to achieve more high yield from 71796.84 kg/h to 71859.39 kg/h and purity from 94% to 99.05% and. The results showed improved efficiency purity and yield with reduced carbon emissions from 67680 kg/h to 14170 kg/h, with the potential for industrial sustainability through feedstock optimization and reduced environmental impact. Copyright © 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: 1,2-Ethylenedichloride; Carbon Emission; High Purity; Yield Maximizing

Article Metrics:

  1. Abukasim, S. M., Zuhria, F., & Saing, Z. (2020). A Pre-Designed Study of The Ethylene Dichloride Plant from Ethylene and Chlorine with 40,000 tons/year Capacity. International Journal of Advanced Science and Technology, 29(6), 7145–7152. DOI: 10.5281/zenodo.3908678
  2. Junsittiwate, R., Kodchakong, A., & Srinophakun, T. R. (2018). Ethylene Dichloride Production by Oxychlorination in a Fluidized Bed Reactor with CFD Model. Asian Journal of Applied Sciences, 6(5). DOI: 10.24203/ajas.v6i5.5506
  3. Lee, H. Y., Yeh, M. H., Chen, Y. Y., & Chen, C. L. (2022). Design and control of a comprehensive Ethylenediamine (EDA) process with external/internal heat integration. Separation and Purification Technology, 293, 121137. DOI: 10.1016/j.seppur.2022.121137
  4. Ma, H., Wang, Y., Qi, Y., Rout, K. R., & Chen, D. (2020). Critical review of catalysis for ethylene oxychlorination. ACS Catalysis, 10(16), 9299-9319. DOI: 10.1021/acscatal.0c01698
  5. Kumaran, V., & Muralidharan, B. (2023). Electric discharge coating process: a critical review with potential application. Engineering Research Express, 5(1), 012005. DOI: 10.1088/2631-8695/acc0db
  6. Zhang, Q., Huang, W., Xing, J., Dong, X., Liu, G., Xu, Y., & Liu, Z. (2022). Effect of Trace Water on the 1, 2-Dichloroethane Cracking over Zeolite Catalysts. Industrial & Engineering Chemistry Research, 61(43), 15803-15809. DOI: 10.1021/acs.iecr.2c02918
  7. Saud, I. H., & AlJaberi, F. Y. (2023). The most effective techniques of industrial purification processes: a technical review. Chimica Techno Acta, 10(4), 202310403. DOI: 10.15826/chimtech.2023.10.4.03
  8. Fayyazi, E., Ghobadian, B., Mousavi, S. M., Najafi, G., Yue, J., & Hosseinzadeh, B. (2021). Optimization of operational and design parameters of a Simultaneous Mixer-Separator for enhanced continuous biodiesel production. Chemical Product and Process Modeling, 16(3), 155-167. DOI: 10.1515/cppm-2020-0001
  9. Mondal, S. K., Uddin, M. R., Majumder, S., & Pokhrel, J. (2015). HYSYS simulation of chemical process equipments. Chemical Engineering and Processing, 1-7. DOI: 10.13140/RG.2.1.4186.9289
  10. Haydary, J. (2018). Chemical process design and simulation: Aspen Plus and Aspen Hysys applications. John Wiley & Sons. ISBN: 978-1-119-31143-0
  11. Singh, D., Sharma, D., Soni, S. L., Sharma, S., Sharma, P. K., & Jhalani, A. (2020). A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel, 262, 116553. DOI: 10.1016/j.fuel.2019.116553
  12. Dry, J., Lawson, B., Le, P., Osisanya, I., Patel, D., & Shelton, A. (2003). Vinyl Chloride Production. University of Oklahoma
  13. Stoessel, F. (2021). Thermal safety of chemical processes: risk assessment and process design. John Wiley & Sons. ISBN: 978-3-527-69692-5
  14. Dimian, A. C., & Bildea, C. S. (2008). Chemical process design: Computer-aided case studies. John Wiley & Sons. DOI: 10.1002/9783527621583
  15. Ritchie, M. E. (2018). Reaction and diffusion thermodynamics explain optimal temperatures of biochemical reactions. Scientific reports, 8(1), 11105. DOI: 10.1038/s41598-018-28833-9
  16. Salehi, M. S., Askarishahi, M., Godini, H. R., Schomäcker, R., & Wozny, G. (2016). CFD simulation of oxidative coupling of methane in fluidized-bed reactors: a detailed analysis of flow-reaction characteristics and operating conditions. Industrial & Engineering Chemistry Research, 55(5), 1149-1163. DOI: 10.1021/acs.iecr.5b02433
  17. Sai Prasad, P. S., Prasad, K. B., & Ananth, M. S. (2001). Parameter estimation in a fixed-bed reactor operating under unsteady state: Oxychlorination of ethylene. Industrial & engineering chemistry research, 40(23), 5487-5495. DOI: 10.1021/ie010031i
  18. Yaws, C.L. (1999). Chemical Properties Handbook. New York: McGraw Hill Company, Inc. ISBN: 9780070734012
  19. Shen, Z., Zhao, H., Liu, Y., Kan, Z., Xing, P., Zhong, J., & Jiang, B. (2018). Mercury-free nitrogen-doped activated carbon catalyst: an efficient catalyst for the catalytic coupling reaction of acetylene and ethylene dichloride to synthesize the vinyl chloride monomer. Reaction Chemistry & Engineering, 3(1), 34-40. DOI: 10.1039/C7RE00201G
  20. Lavado, G. J., Pighizzini, G., & Prigioniero, L. (2017). Weakly and strongly irreversible regular languages. arXiv preprint arXiv:1708.06465. DOI: 10.4204/EPTCS.252.15
  21. Affandy, S. A., Kurniawan, A., Handogo, R., Sutikno, J. P., & Chien, I. L. (2020). Technical and economic evaluation of triethylene glycol regeneration process using flash gas as stripping gas in a domestic natural gas dehydration unit. Engineering Reports, 2(5), e1215. DOI: 10.1002/eng2.12153
  22. Zhang, Y., & Ray, A. K. (2023). Liquid–liquid extraction. In Coulson and Richardson's Chemical Engineering (pp. 257-312). Butterworth-Heinemann. DOI: 10.1016/B978-0-08-101097-6.00004-3
  23. Sorsamäki, L., & Nappa, M. (2015). Design and selection of separation processes. Finland: VTT Technical Research Centre of Finland Ltd
  24. Tonini, D., Albizzati, P. F., Caro, D., De Meester, S., Garbarino, E., & Blengini, G. A. (2022). Quality of recycling: Urgent and undefined. Waste Management, 146, 11-19. DOI: 10.1016/j.wasman.2022.04.037
  25. Unegg, M. C., Steininger, K. W., Ramsauer, C., & Rivera-Aguilar, M. (2023). Assessing the environmental impact of waste management: A comparative study of CO2 emissions with a focus on recycling and incineration. Journal of Cleaner Production, 415, 13774. DOI: 10.1016/j.jclepro.2023.137745

Last update:

No citation recorded.

Last update:

No citation recorded.