skip to main content

Improving Cyclohexane Yield from Hydrogenation Benzene with a Modified Multistage Separation Design

Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, 50275, Indonesia

Received: 19 Dec 2024; Revised: 27 Dec 2024; Accepted: 27 Dec 2024; Available online: 10 Jan 2025; Published: 30 Jun 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Cyclohexane is a compound that is widely used in various industrial applications as a chemical intermediate. Apart from that, this compound can also be used to produce solvents, insecticides and plasticizers. With the large use of cyclohexane, production with high efficiency in terms of yield is required. The aim of this research is to develop a process design for producing cyclohexane from benzene hydrogenation, with the aim of achieving high yield. This research uses an iterative simulation method to compare the basic process and a modified process for cyclohexane production. This process involves creating a simulation model using Aspen HYSYS and adjusting the process parameters until the desired results are achieved. The results of this research indicate that the cyclohexane produced in the modification process achieves a higher percentage of yield product. Based on the implemented process modification, there has been an increase in the yield of cyclohexane produced from 93.49% to 99.90%. Based on the results of this research, the modification process is proven to be able to increase yield and mass flow compared to the basic process system. Copyright © 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Cyclohexane; Yield; Hydrogenation; Benzene; Aspen HYSYS

Article Metrics:

  1. Foppa, L. & Dupont, J. Benzene partial hydrogenation: advances and perspectives. Chemical Society Reviews, 44(7), 1886-1897. DOI: 10.1039/C4CS00324A
  2. Rios, J., Lebeau, J., Yang, T., Li, S., & Lynch, M. (2021). A Critical Review on the Progress and Challenges to a More Sustainable, Cost Competitive Synthesis of Adipic Acid. Green Chemistry, 23(9), 3172–3190. DOI: 10.1039/d1gc00638j
  3. González-Galán, C., Luna-Triguero, A., Vicent-Luna, J. M., Zaderenko, A. P., Sławek, A., Sánchez-de-Armas, R., & Calero, S. (2020). Exploiting the π-bonding for the separation of benzene and cyclohexane in zeolites. Chemical Engineering Journal, 398, 125678. DOI: 10.1016/j.ced.2020.125678
  4. Ayuso, M., Barcala, A. C., Larriba, M. & Navarro, P. (2020). Enhanced Separation of Benzene and Cyclohexane by Homogeneous Extractive Distillation using Ionic Liquids as Entrainers. Separation and Purification Technology, 240. DOI: 10.1016/j.seppur.2020.116583
  5. Schäfer, L., Karande, R., & Bühler, B. (2020). Maximizing biocatalytic cyclohexane hydroxylation by modulating cytochrome P450 monoxygenase expression in P. taiwanensis VLB120. Frontiers in Bioengineering and Biotechnology, 8(140). DOI: 10.3389/fbioe.2020.00140
  6. Wang, X., Zhao, Y., Han, L., Li, L., & Kiss, A. A. (2023). The quest for a better solvent for the direct hydration of cyclohexene: From molecular screening to process design. Chemical Engineering Science, 274. DOI: 10.1016/j.ces.2023.118678
  7. Ullmann, F. (2003). Ullmann’s Encyclopedia of Industrial Chemistry. In Ullmann’s Encyclopedia of Industrial Chemistry. DOI: 10.1002/14356007
  8. Chen, H. & Sun, J. (2021). Selective hydrogenation of phenol for cyclohexanone: A review. Journal of Industrial and Engineering Chemistry, 94, 78-91. DOI: 10.1016/j.jiec.2020.11.022
  9. Joseph, W. (2016). Three-phase catalytic reactors for hydrogenation and oxidation reactions. Physical Sciences Reviews, 1(1). DOI: 10.1515/psr-2015-0019
  10. Dada, E. A. & Achenie, L. (2012). Production of cyclohexane from hydrogenation of benzene using microreactor technology. Proceedings or the 11th International Symposium on Process Systems Engineering, 240-244. DOI: 10.1016/B978-0-444-59507-2.50040-8
  11. Pelaquim, F. P., Bitencourt, R. G., Neto, A. M. B., Dalmolin, I. A. L., & Costa, M. C. (2022). Carbon dioxide solubility in deep eutectic solvents: modelling using cubic plus association and peng-robinson equations of state. Process Safety and Environmental Protection, 163, 14-26. DOI: 10.1016/j.psep.2022.04.075
  12. Valdez, J. A. C., Patiño-Herrera, R., Martínez, A. A., & Pérez, E. (2024). Separation of the cyclohexane-benzene mixture by the extractive distillation process using ethylene glycol as a solvent. Chemical Engineering and Processing-Process Intensification, 196, 109686. DOI: 10.1016/j.cep.2024.109686
  13. Yao, H., Wang, Y. M., Quan, M., Farooq, M. U., Yang, L. P., & Jiang, W. (2020). Adsorptive separation of benzene, cyclohexene, and cyclohexane by amorphous nonporous amide naphthotube solids. Angewandte Chemie, 132(45), 20117-20122. DOI: 10.1002/anie.202009436
  14. Giarracca, L., Isufaj, F., Lizardo-Huerta, J. C., Fournet, R., Glaude, P. A., & Sirjean, B. (2021). Experimental and kinetic modeling of the ignition delays of cyclohexane, cyclohexene, and cyclohexadienes: Effect of unsaturation. Proceedings of the Combustion Institute, 38(1), 1017-1024. DOI: 10.1016/j.proci.2020.07.151
  15. Seider, W. D., Lewin, D. R., Seader, J. D., Widagdo, S., Gani, R., Ng, K. M. (2019). Product and process design principles: synthesis, analysis, and evaluation (4th ed.). Jersey: John Wiley And Sons
  16. Corrêa, I., Faria, R.P.V., & Rodrigues, A.E. (2021). Continuous Valorization of Glycerol into Solketal: Recent Advances on Catalysts, Processes, and Industrial Perspectives. Sustainable Chemistry, 2(2), 286–324. DOI: 10.3390/suschem2020017
  17. Liu, Z., Liu, S., Li, Z., Liu, Z., & Liu, S. (2020). Catalytic technology for selective hydrogenation of benzene to cyclohexene, 33-57. DOI: 10.1007/978-981-15-6411-6
  18. Wang, C., Zhang, B., Cong, S., Luo, C., Li, M., Guo, Z., Wang, Z., & Liu, X. (2024). Threading MOF membranes with polymer chains for superior benzene/cyclohexane separation. Journal of Membrane Science, 717. DOI: 10.1016/j.memsci.2024.123566
  19. Gerbaud, V., Rodriguez-Donis, I., Hegely, L., Lang, P., Denes, F., & You, X. (2019). Review of extractive distillation. Process design, operation, optimization and control. Chemical Engineering Research and Design, 141, 229-271. DOI: 10.1016/j.cherd.2018.09.020
  20. Mcketta, J. J. (1993). Chemical Processing Handbook (1st ed.). CRC Press
  21. Radzuan, M. R., Nursyahirah, S., Syihabuddin, M. A., Alikasturi, A. S., & Faizal, T. A. (2019). Comparative analysis of cyclohexane production from benzene and hydrogen: via simulation and sustainability evaluator approach. Materials Today: Proceedings, 19, 1693-1702. DOI: 10.1016/j.matpr.2019.11.199
  22. Zhang, J., Li, X., Chen, H., Qi, M., Zhang, G., Hu, H., & Ma, X. (2017). Hydrogen production by catalytic methane decomposition: carbon materials as catalysts or catalyst supports. International Journal of Hydrogen Energy, 42(31), 19755-19775. DOI: 10.1016/j.ijhydene.2017.06.197
  23. Yaws, C.L. (1996). Chemical Properties Handbook Physical
  24. Passerini, S., Barelli, L., Baumann, M., Peters, J. F., & Weil, M. (2024). Emerging battery technologies to boost the clean energy transition: Cost, Sustainability, and Performance Analysis. Springer Nature: Switzerland. DOI: 10.1007/978-3-031-48359-2
  25. Motie, M., Moein, P., Palayesh, T. O., Moghadasi, R., & Palayesh, T. O. (2019). Separator pressure optimisation and cost evaluation of a multistage production unit using genetic algorithm. International Petroleum Technology Conference. DOI: 10.2523/IPTC-19396-MS
  26. Zhang, G., Lin, W., Huang, F., Sessler, J., & Khashab, N. M. (2023). Industrial Separation Challenges: How Does Supramolecular Chemistry Help? Journal of the American Chemical Society, 145(35), 19143-19163. DOI: 10.1021/jacs.3c06175
  27. Du, Y., Luo, Y., Yang, P., Jia, S., & Yuan, X. (2024). Rigorous design and economic optimization of reactive distillation column considering real liquid hold-up and hydraulic conditions of industrial device. Chinese Journal of Chemical Engineering, 76, 211-226. DOI: 10.1016/j.cjche.2024.09.007

Last update:

No citation recorded.

Last update:

No citation recorded.