skip to main content

Tailoring Bandgap and Crystallinity of TiO₂ via Mg Doping for Enhanced DSSC Photoanode Performance

Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

Received: 12 Aug 2025; Revised: 16 Oct 2025; Accepted: 17 Oct 2025; Available online: 21 Oct 2025; Published: 26 Dec 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The structural and optical properties of magnesium-doped titanium dioxide (Mg–TiO₂) nanocrystalline films were investigated for potential application as photoanodes in dye-sensitized solar cells (DSSCs). The films were synthesized via a sol-gel method using titanium(IV) isopropoxide and magnesium acetate as precursors. Mg doping concentrations ranging from 0 to 4 mol% were explored. The films were deposited onto glass substrates using the doctor blade technique and annealed at various temperatures. Characterization was carried out using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), Fourier-transform infrared spectroscopy (FTIR), and UV–Vis spectroscopy. XRD analysis confirmed the formation of TiO₂, MgO, and MgTiO₃ phases, with a notable decrease in crystallite size as Mg content increased. The smallest crystallite size of 12.71 nm was obtained at 4 mol% Mg doping. SEM images revealed improved surface morphology and more uniform porosity in doped films. FTIR spectra indicated no significant changes in chemical bonding, while UV–Vis analysis showed a decrease in bandgap energy from 3.8 eV to 3.4 eV with Mg doping. These modifications suggest enhanced dye adsorption and reduced charge recombination, indicating the potential of Mg-doped TiO₂ films to improve DSSC performance. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Mg-doped TiO₂; sol–gel method; crystallite size; photoanode; dye-sensitized solar cell
Funding: Séjour Scientifique de Haut Niveau (SSHN)

Article Metrics:

  1. Chappidi, V.R., Seshaiah, K.V., Madduri, S., Raavi, S.S.K. (2024) Rare-earth-doped TiO2 photoanode DSSCs for indoor photovoltaics: a comparative study. Journal of Materials Science: Materials in Electronics, 35 (2024). DOI: 10.1007/s10854-024-12261-9
  2. Aydın Ünal, F. (2025) Synthesis and characterization of the doped/co‐doped SnO 2 nanoparticles by the sol–gel method. Int. J. Appl. Ceram. Technol., 22 (2025). DOI: 10.1111/ijac.14916
  3. Srivastava, K.V., Srivastava, P., Srivastava, A., Maurya, R.K., Singh, Y.P., Srivastava, A. (2025) 1D TiO2 photoanodes: a game-changer for high-efficiency dye-sensitized solar cells. RSC Advances, 15 (2025) 4789–4819. DOI: 10.1039/d4ra06254j
  4. Al Moyeen, A., Mahmud, R.M., Mazumder, D.D., Ghosh, S., Datta, O., Molla, A., Begum, M.E. (2024) Investigation of structural, optical, antibacterial, and dielectric properties of sol-gel and biosynthesized TiO2 nanoparticles, Heliyon, 10. DOI: 10.1016/j.heliyon.2024.e40776
  5. Matsunaga, M., Yu, Y., Takahashi, K. (2024). Photoelectrochemical Activity of TiO2/MWCNT Thin-Film Electrodes with Different Film Structures Prepared by Combining Electrophoretic Deposition and Sol–Gel Method. Electrochemistry, 92. DOI: 10.5796/electrochemistry.24-00014
  6. Atia, D.M., Ahmed, N.M., Abou Hammad, A.A., Toraya, M.M., El Nahrawy, A.M. (2024) Enhanced performance of Mg and la co-doped TiO2(98%)-ZrO2(2%)photoanode for dye-sensitized solar cells. Clean Energy, 8 (2024) 225–236. DOI: 10.1093/ce/zkae091
  7. Arshad, Z., Khoja, A.H., Shakir, S., Afzal, A., Mujtaba, M.A., Soudagar, M.E.M., Fayaz, H., Saleel C, A., Farukh, S., Saeed, M. (2021) Magnesium doped TiO2as an efficient electron transport layer in perovskite solar cells. Case Studies in Thermal Engineering, 26. DOI: 10.1016/j.csite.2021.101101
  8. Dey, A., Vashishtha, L., Gogate, P.R. (2025). Ultrasound-assisted sol–gel synthesis of N-TiO2, Fe-TiO2, and TiO2 with application in treatment of a commercial effluent. Journal of Chemical Technology and Biotechnology, 100, 697-716. DOI: 10.1002/jctb.7808
  9. Morante, N., Monzillo, K., Vaiano, V., Kadirova, Z.C., Sannino, D. (2025) Synthesis and Characterization of a Novel Sol–Gel-Derived Ni-Doped TiO2 Photocatalyst for Rapid Visible Light-Driven Mineralization of Paracetamol. Nanomaterials, 15. DOI: 10.3390/nano15070530
  10. Lau, A., Goh, C.Y., Guo, Y., Alsultan, A.G., Taufiq-Yap, Y.H., Nurhadi, M., Lai, S.Y. (2025) Visible-light Degradation of Methylene Blue using Energy-Efficient Carbon-Doped TiO2: Kinetic Study and Mechanism. Bulletin of Chemical Reaction Engineering & Catalysis, 20 177–192. DOI: 10.9767/bcrec.20347
  11. Stoyanova, A., Hitkova, H., Kaneva, N., Bachvarova-Nedelcheva, A., Iordanova, R., Marinovska, P. (2024) Photocatalytic Degradation of Paracetamol and Antibacterial Activity of La-Modified TiO2 Obtained by Non-Hydrolytic Sol–Gel Route. Catalysts, 14. DOI: 10.3390/catal14080469
  12. Yang, F., Wang, C., Li, L., Diao, H., Wang, Y., Zheng, X., Li, C. (2025) Nickel-Doped TiO2 Nanoplate Synthesized via Mechanical Ball Milling-Assisted Sol–Gel Method for Photocatalytic Degradation of MB and NO. Processes, 13. DOI: 10.3390/pr13041192
  13. Khalaghi, M., Atapour, M., Momeni, M.M., Karampoor, M.R. (2025) Visible light photocatalytic efficiency and corrosion resistance of Zn, Ni, and Cu-doped TiO2 coatings. Results Chem., 13. DOI: 10.1016/j.rechem.2025.102032
  14. Bharatbhai Akhani, S., Kumar Thatikonda, S., Solanki, M.B., Akhani, T., Gone, S., Singh Rathore, M. (2024) Photoluminescence and photocatalytic activity of sol gel synthesized Mg doped TiO2 nanoparticles. Inorg. Chem. Commun., 170. DOI: 10.1016/j.inoche.2024.113294
  15. Flores-Gómez, J., Mota-Macías, S., Guerrero-Jiménez, J.P., Romero-Arellano, V.H., Morales-Rivera, J. (2024) Sol–Gel Synthesis of TiO2 with Pectin and Their Efficiency in Solar Cells Sensitized by Quantum Dots. Gels, 10. DOI: 10.3390/gels10070470
  16. Vlăduț, C.M., Anastasescu, C., Preda, S., Mocioiu, O.C., Petrescu, S., Pandele-Cusu, J., Culita, D., Bratan, V., Balint, I., Zaharescu, M. (2024) Mn-doped ZnO nanopowders prepared by sol–gel and microwave-assisted sol–gel methods and their photocatalytic properties. Beilstein Journal of Nanotechnology, 15, 1283–1296. DOI: 10.3762/bjnano.15.104
  17. Ivanova, T., Harizanova, A., Koutzarova, T., Closset, R. (2024) Crystallization and Optical Behaviour of Nanocomposite Sol-Gel TiO2:Ag Films. Molecules, 29. DOI: 10.3390/molecules29215156
  18. Ćurković, L., Briševac, D., Ljubas, D., Mandić, V., Gabelica, I. (2024) Synthesis, Characterization, and Photocatalytic Properties of Sol-Gel Ce-TiO2 Films, Pre Pprints. DOI: 10.20944/preprints202405.0652.v1
  19. Sadek, O., Touhtouh, S., Rkhis, M., Anoua, R., El Jouad, M., Belhora, F., Hajjaji, A. (2022) Synthesis by sol-gel method and characterization of nano-TiO2 powders. Materials Today Proceeding, 456–458. DOI: 10.1016/j.matpr.2022.06.385
  20. Podelinska, A., Neilande, E., Pankratova, V., Serga, V., Bandarenka, H., Burko, A., Piskunov, S., Pankratov, V.A., Sarakovskis, A., Popov, A.I., Bocharov, D.V. (2025) Structural and Spectroscopic Characterization of TiO2 Nanocrystalline Materials Synthesized by Different Methods. Nanomaterials, 15. DOI: 10.3390/nano15070498
  21. Sassi, S., Bouich, A., Bessais, B., Khezami, L., Soucase, B.M., Hajjaji, A. (2024) Comparative Analysis of Anodized TiO2 Nanotubes and Hydrothermally Synthesized TiO2 Nanotubes: Morphological, Structural, and Photoelectrochemical Properties. Materials, 17. DOI: 10.3390/ma17215182

Last update:

No citation recorded.

Last update:

No citation recorded.