skip to main content

Green Synthesis of Cu-BDC Nanosheets for Methylene Blue Degradation

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Jl. Lingkar Kampus Raya, Pondok Cina, Beji, Depok, Jawa Barat 16424, Indonesia

2Department of Chemistry Education, Faculty of Tarbiya and Teaching Sciences, UIN Syarif Hidayatullah, Jl. Ir. H. Juanda No. 95 Ciputat Tangerang Selatan 15412, Indonesia

Received: 30 Jul 2025; Revised: 15 Sep 2025; Accepted: 16 Sep 2025; Available online: 22 Sep 2025; Published: 26 Dec 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Metal Organic Frameworks (MOFs) with two-dimensional (2D) nanosheet morphology possess unique surface characteristics, making them highly favourable for photocatalytic applications. This study synthesised Cu²⁺-based MOF nanosheets using a modified three-layer method. This approach is relatively simple, energy-efficient, and qualifies as a green synthesis method. The MOFs were prepared from copper(II) nitrate trihydrate (Cu(NO₃)₂·3H₂O) as the metal precursor and 1,4-benzenedicarboxylic acid (H₂BDC) as the organic linker, aiming to evaluate their photocatalytic activity for methylene blue degradation. The resulting Cu-BDC nanosheets displayed characteristic FTIR absorption bands at 1501 and 1547 cm⁻¹ corresponding to symmetric and asymmetric C=O stretching, 1394 cm⁻¹ for C–O stretching, and peaks at 751 and 569 cm⁻¹ associated with Cu–O vibrations. The XRD analysis revealed four sharp peaks at 2θ values of 8.2°, 10.2°, 16.1°, and 34.1°, indicating good crystallinity with a calculated crystallite size of 22.03 nm, and the bandgap energy is 3.89 eV. Cu-BDC nanosheets exhibit a thin sheet morphology with elemental compositions of carbon 73.08%, oxygen 11.19%, and copper 15.73%. Cu-BDC nanosheets exhibit optimal degradation activity at pH 13, with an optimal catalyst dose of 5 mg and an initial dye concentration of 20 ppm, achieving a degradation capacity of 98.62 mg/g after 120 minutes of reaction. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Green synthesis; methylene blue; Cu-BDC nanosheets

Article Metrics:

  1. Nguyen, V.Q., Mady, A.H., Mahadadalkar, M.A., Baynosa, M.L., Kumar, D.R., Rabie, A.M., Lee, J., Kim, W.K., Shim, J.J. (2022). Highly active Z-scheme heterojunction photocatalyst of anatase TiO2 octahedra covered with C-MoS2 nanosheets for efficient degradation of organic pollutants under solar light. J. Colloid Interface Sci., 606, 33752. DOI: 10.1016/j.jcis.2021.07.128
  2. Wu, Y.H., Wu, T., Lin, Y.W. (2019). Photoelectrocatalytic degradation of methylene blue on cadmium sulfide–sensitized titanium dioxide film. Mater. Res. Bull., 118, 110500. DOI: 10.1016/j.materresbull.2019.110500
  3. Khan, S., Noor, T., Iqbal, N., Yaqoob, L. (2024). Photocatalytic dye degradation from textile wastewater: a review. ACS Omega, 9(20), 21751–21767. DOI: 10.1021/acsomega.4c00887
  4. Naimah, S., Ardhanie, S.A., Jati, B.N., Aidha, N.N., Arianita, A.C. (2014). Degradasi Zat warna pada limbah cair industri tekstil dengan metode fotokatalitik menggunakan nanokomposit TiO2-Zeolit. Jurnal Kimia Kemasan, 36(2), 225–236. DOI: 10.24817/jkk.v36i2.1889
  5. Roy, S., Darabdhara, J., Ahmaruzzaman, Md. (2024). Recent advances of Copper- BTC metal-organic frameworks for efficient degradation of organic dye-polluted wastewater: synthesis, mechanistic insights and future outlook. Journal of Hazardous Materials Letters, 5(4), 1–10. DOI: 10.1016/j.hazl.2023.100094
  6. Chen, Y., Wang, D., Deng, X., Li, Z. (2017). Metal–organic frameworks (MOFs) for photocatalytic CO2 reduction. Catalysis Science Technology, 7 (21), 4893–4904. DOI: 10.1039/C7CY01653K
  7. Nguyen, H.L. (2021). Metal–organic frameworks for photocatalytic water splitting. Solar RRL, 5(7), 1–19. DOI: 10.1002/solr.202100198
  8. Hidayat, R., Saputra, A., Fitria, M. (2022). Material MOFs (metal organic frameworks) dalam aplikasi fotokatalisis: mini review. IJCA (Indonesian Journal of Chemical Analysis), 5(2), 120–137. DOI: 10.20885/ijca.vol5.iss2.art7
  9. Gautam, S., Agrawal, H., Thakur, M., Akbari, A., Sharda, H., Kaur, R., Amini, M. (2020). Metal oxides and metal organic frameworks for the photocatalytic degradation: a review. Journal of Environmental Chemical Engineering, 8(3), 1–15. DOI: 10.1016/j.jece.2020.103726
  10. Cao, X., Tan, C., Sindoro, M., Zhang, H. (2017). Hybrid micro-/nano-structures derived from metal–organic frameworks: preparation and applications in energy storage and conversion. Chem. Soc. Rev., 46, 2660–2677. DOI: 10.1039/C6CS00426A
  11. Li, N., Li, H., Ji, R., Lin, S., Xu, C., Huang, J., Zhou, Q., Lyu, S., Li, F., Tang, J. (2023). Fabrication of bimetallic MOF with 2D nanosheets structure and rich active sites for enhanced removal of organic pollutants by activation of peroxymonosulfate. Journal of Environmental Chemical Engineering. 2023, 11, 110607. DOI: 10.1016/j.jece.2023.110607
  12. Zhao, K., Zhu, W., Liu, S., Wei, X., Ye, G., Su, Y., He, Z. (2020). Two-dimensional metal–organic frameworks and their derivatives for electrochemical energy storage and electrocatalysis. Nanoscale Advances. 2, 536. DOI: 10.1039/C9NA00719A
  13. Solomos, M.A., Clairea, J., Kempa, T.J. (20190. 2D molecular crystal lattices: advances in their synthesis, characterization, and application. Journal of Materials Chemistry A. 7, 25537. DOI: 10.1039/C9TA06534B
  14. Khan, S., Shahid, M. (2021). Throwing light on the current developments of two-dimensional metal–organic framework nanosheets (2D MONs). Materials Advances. 2, 4914. DOI: 10.1039/D1MA00389E
  15. Wang, X., Chi, C., Zhang, K., Qian, Y., Gupta, K. M., Kang, Z., Jiang, J., Zhao, D. (2017). Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nat. Commun., 2017, 8, 1–10. DOI: 10.1038/ncomms14460
  16. Carne´, A., Carbonell, C., Imaz, I., Maspoch, D. (2011). Nanoscale metal–organic materials. Chem. Soc. Rev., 2011, 40, 291–305. DOI: 10.1039/C0CS00042F
  17. Rocca, V. D., Liu, D., Lin, W. (2011). Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res., 2011, 44, 957–968. DOI: 10.1021/ar200028a
  18. Li, Z.X., Yang, B.L., Zou, K.Y., Kong, L., Yue, M.L., Duan H.H. (2018). Novel porous carbon nanosheet derived from a 2D Cu-MOF: Ultrahigh porosity and excellent performances in the supercapacitor cell. Carbon. 2018, 144, 540-54. DOI: 10.1016/j.carbon.2018.12.061
  19. Yu, Y.H., Lin, X.Y., Teng, K.L., Lai, W.F., Hu, C.C., Tsai, C.H., Liu, C.P., Lee, H.L., Su, C.H., Liu, Y.H., Lu, K.L., Chien, S.Y. (2023). Synthesis of two-dimensional (Cu–S)n metal–organic framework nanosheets applied as peroxidase mimics for detection of glutathione. Inorg. Chem. 62, 42, 17126–17135. DOI: 10.1021/acs.inorgchem.3c02023
  20. Hermes, S., Witte, T., Hikov, T., Zacher, D., Bahnmu¨ller, S., Langstein, G., Huber, K., & Fischer, R. A. (2007). Trapping metal-organic framework nanocrystals: an in-situ time-resolved light scattering study on the crystal growth of MOF-5 in solution. J. Am. Chem. Soc., 129, 5324–5325. DOI: 10.1021/ja068835i
  21. Wang, Z., Wang, G., Qi, H., Wang, M., Wang, M., Park, S. W., Wang, H., Yu, M., Kaiser, U., Fery, A., Zhou, S., Dong, R., Feng, X. (2020). Ultrathin two-dimensional conjugated metal organic framework single-crystalline nanosheets enabled by surfactant-assisted synthesis. Chem. Sci., 11, 7665. DOI: 10.1039/D0SC01408G
  22. Rodenas, T., Luz, I., Prieto, G., Seoane, B., Miro, H., Corma, A., Kapteijn, F., Llabre´s i Xamena, F.X., Gascon, J. (2015). Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater., 14, 48–55. DOI: 10.1038/nmat4113
  23. Mahrunisa, N., Adawiah, A., Aziz, I., Zulys, A. (2023). Green synthesis of Cr-PTC-HIna metal organic frameworks (MOFs) and its application in methylene blue photocatalytic degradation. Bulletin of Chemical Reaction Engineering & Catalysis, 18(3), 362-374. DOI: 10.9767/bcrec.18885
  24. Zhao, M., Huang, Y., Peng, Y., Huang, Z., Ma, Q., Zhang, H. (2018). Two-dimensional metal-organic framework nanosheets: synthesis and applications. Chem. Soc. Rev., 47, 6267–6295. DOI: 10.1039/C8CS00268A
  25. Yang, D.N., Geng, S., Zhang, H. (2024). Cu-MOF nanosheets with laccase-like activity for phenolic compounds detection and dye removal. Inorganic Chemistry Communications. 170, 113228. DOI: 10.1016/j.inoche.2024.113228
  26. He, C., Liu, C., Li, M., Li, M., Yin, J., Han, S., Xia, J., Chen, D., Cao, W., Lu, Q., Rosei, F. (2022). 3D hierarchical Cu-MOF nanosheets-based antibacterial mesh. Chemical Engineering Journal, 446, 137381. DOI: 10.1016/j.cej.2022.137381
  27. Shete, M., Kumara, P., Bachman, J.E., Ma, X., Smith, Z.P., Xu, W., Mkhoyana, K.A., Long, J.R., Tsapatsisa, M. (2018). On the direct synthesis of Cu(BDC) MOF nanosheets and their performance in mixed matrix membranes. Journal of Membran Science. 549, 312-320. DOI: 10.1016/j.memsci.2017.12.002
  28. Spingler, B., Schnidrig, S., Todorova, T., Wild, F. (2012). Some thoughts about the single crystal growth of small molecules. CrystEngComm, 14, 751–757. 123. DOI: 10.1039/C1CE05624G
  29. Elashery, S.E.A., Oh, H. (2021). Exploitation of 2D Cu-MOF nanosheets as a unique electroactive material for ultrasensitive Cu(II) ion estimation in various real samples. Analytica Chimica Acta. 1181, 338924. DOI: 10.1016/j.aca.2021.338924
  30. Sadjadi, S., Koohestani, F. (20222). Palladated composite of Cu-BDC MOF and perlite as an efficient catalyst for hydrogenation of nitroarenes. Journal of Molecular Structure, 1250 (171793). DOI: 10.1016/j.molstruc.2021.131793
  31. Mertsoy, E.Y. (2025). Energy-efficient synthesis of copper terephthalate metal–organic frameworks using sorbitol and choline chloride-based deep eutectic solvents for methylene blue removal. Arabian Journal for Science and Engineering, 1(1), 1–14. DOI: 10.1007/s13369-024-09890-x
  32. Zhan, G., Fan, L., Zhao, F., Huang, Z., Chen, B., Yang, X., Zhou, S.F. (2018). Fabrication of ultrathin 2D Cu-BDC nanosheets and the derived integrated MOF nanocomposites. Adv. Funct. Mater. 1806720. DOI: 10.1002/adfm.201806720
  33. Muttaqin, Hidayat, F.I. (2021). A Modest method of synthesis Cu- based metal-organic frameworks using benzene dicarbocxylate as a ligan for promising candidate of flue gas CO2 adsorption. Jurnal Natural, 21(3), 128–134. DOI: 10.24815/jn.v21i3.20035
  34. Sutapa, I.W., Palapessya, B.V., Souhoka, F.A., Bandjar, A. (2024). Synthesis of Cu-1,4-benzene dicarboxylate metal-organic frameworks (Cu-BDC MOFs) from plastic waste and its application as catalyst in biodiesel production. Trends in Sciences, 21(1), 2–15. DOI: 10.48048/tis.2023.7163
  35. Nayak, A., Viegas, S., Dasari, H., Sundarabal, N. (2022). Cu-BDC and Cu2O derived from Cu-BDC for the removal and oxidation of asphaltenes: a comparative study. ACS Omega, 7(39), 34966–34973. DOI: 10.1021/acsomega.2c03574
  36. Kormann, C., Bahnemann, D.W., Hoffmann, M. R. (1988). Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand. Environmental Science & Technology, 22(7), 798–806. DOI: 10.1021/es00172a009
  37. Hamdalla, T.A., Alfadhli, S., Khasim, S., Darwish, A.A.A., ElZaidia, E.F.M., Al-Ghamdi, S.A., Aljohani, M.M., Mahmoud, M.E., Seleim, S.M. (2024). Synthesis of novel Cu/Fe based benzene dicarboxylate (BDC) metal organic frameworks and investigations into their optical and electrochemical properties. Heliyon, 10(3), 1–13. DOI: 10.1016/j.heliyon.2024.e25065
  38. Xie, W., Liu, X.H., Wang, Y.X., Lai, W.H., Zhao, Q. (2023). Regulating the oxidation state of copper centers in metal-organic frameworks for enhanced carbon dioxide photoreduction. Cell Reports Physical Science, 4(10), 1–12. DOI: 10.1016/j.xcrp.2023.101587
  39. Yadav, R.S., Kuřitka, I., Vilcakova, J., Urbánek, P., Machovsky, M., Masař, M., Holek, M. (2017). Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method. Journal of Physics and Chemistry of Solids, 110(1), 87–99. DOI: 10.1016/j.jpcs.2017.05.029
  40. Dastbaz, A., Karimi-Sabet, J., Moosavian, M.A. (2019). Sonochemical synthesis of novel decorated graphene nanosheets with amine functional Cu-terephthalate MOF for hydrogen adsorption: effect of ultrasound and graphene content. International Journal of Hydrogen Energy. 44, 26444-26458. DOI: 10.1016/j.ijhydene.2019.08.116
  41. Wang, F., Guo, H., Chai, Y., Li, Y., Liu, C. (2013). The controlled regulation of morpholo gy and size of HKUST-1 by coordination mod ulation method. Microporous and Mesoporous Materials, 173, 181–188. DOI: 10.1016/j.micromeso.2013.02.023
  42. Nurbayti, S., Adawiah, A., Bale, U.F., Fadhilla, R., Ramadhan, F.N., Zulys, A., Sukandar, S., Saridewi, N., Tulhusna, L. (2024). Sonochemical assisted synthesis of Cr-PTC metal organic framework, ZnO, and Fe3O4 composite and their photocatalytic activity in methylene blue degradation. Bulletin of Chemical Reaction Engineering & Catalysis. 19(2), 318-326. DOI: 10.9767/bcrec.20156
  43. Adawiah, A., Luthfi, Y. M. D., Zulys, A. (2021). Photocatalytic Degradation of Methylene Blue and Methyl Orange by Y-PTC Metal-Organic Framework. Jurnal Kimia Valensi. 7(2), 129-141, DOI: 10.15408/jkv.v7i2.22267
  44. Zulys, A., Defania, M., Gunlazuardi, J., Adawiah, A., (2023) Glycine-modulated zirconium perylene-based metal-organic framework for rhodamin B photocatalytic degradation, Molekul, 18 (3), 497–507, DOI: 10.20884/1.jm.2023.18.3.91
  45. Hevira, L., Zilfa, Rahmayeni, Ighalo, J.O., Zein, R. (2020). Biosorption of indigo carmine from aqueous solution by Terminalia catappa shell. Journal of Environmental Chemical Engineering. 8(5), 1–11. DOI: 10.1016/j.jece.2020.104290
  46. Chen, X., Mao, S.S. (2007). Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews. 107(7), 2891–2959. DOI: 10.1021/cr0500535
  47. Saridewi, N., Utami, D.J., Zulys, A., Nurbayti, S., Nurhasni, Adawiah, Putri, A.R., Kamal, R. (2024). Utilization of Lidah mertua (Sansevieria trifasciata) extract for green synthesis of ZnFe2O4 nanoparticle as visible-light responsive photocatalyst for dye degradation. Case Studies in Chemical and Environmental Engineering. 9(2024) 100745. DOI: 10.1016/j.cscee.2024.100745
  48. Kumar, A., Pandey, G. (2017). A review on the factors affecting the photocatalytic degradation of hazardous materials. Material Science & Engineering International Journal. 1(3), 106–114. DOI: 10.15406/mseij.2017.01.00018
  49. Natarajan, S., Bajaj, H.C., Tayade, R.J. (2018). Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. Journal of Environmental Sciences. 65(3), 201–222. DOI: 10.1016/j.jes.2017.03.011
  50. Saridewi, N., Komala, S., Zulys, A., Nurbayti, S., Tulhusna, L., Adawiah, A. (2022). Synthesis of ZnO-Fe3O4 magnetic nanocomposites through sonochemical methods for methylene blue degradation. Bulletin of Chemical Reaction Engineering & Catalysis. 17(3), 650-660. DOI: 10.9767/bcrec.17.3.15492.650-660

Last update:

No citation recorded.

Last update:

No citation recorded.