skip to main content

A Study on IIIA Group Metals (B or Ga or Tl) Doped Mo2C-HZSM-5 Catalysts for Methane Dehydroaromatization

Chemical and Materials Engineering Department, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah, 21589, Saudi Arabia

Received: 26 Aug 2025; Revised: 14 Sep 2025; Accepted: 15 Sep 2025; Available online: 19 Sep 2025; Published: 26 Dec 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Methane dehydroaromatization (MDA) is a promising route for direct conversion of methane into value-added aromatics such as benzene, toluene and naphthalene. This study investigates the effect of IIIA group metals like boron (B), gallium (Ga), and thallium (Tl) doped into Mo₂C/HZSM-5 catalysts tested for MDA at 700 oC and 1800 mL.gcat-1.h-1. The influence of promoters on catalyst acidity and coke formation was investigated through various analytical techniques including NH₃-TPD and TPO. Among the samples, Ga-Mo₂C/HZSM-5 demonstrated greater benzene selectivity and consistent stability due to abundant Mo2C and low temperature coke formations. Whereas, B- or Tl-Mo₂C/HZSM-5 suffered from high temperature coke formations related to their greater acidity and greater extent of surface molybdenum oxidized species. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: MDA; Benzene; naphthalene; Mo2C; HZSM-5
Funding: King Abdulaziz University under contract DSR 355-135-1443

Article Metrics:

  1. Zhu, P., Bian, W., Liu, B., Hao, D., Lucun, W., Xiaozhou, H., Stephanie, L.S., Feng, L., Chuancheng, D., Dong, D., Pei, D., Hanping, D (2024). Direct conversion of methane to aromatics and hydrogen via a heterogeneous trimetallic synergistic catalyst. Nature Communications. 15, 3280. DOI: 10.1038/s41467-024-47595-9
  2. Hu, J., Yang, C., Liu, B., Zhao, X., Wang, Y., Wang, X., Liu, J., Guan, J. (2023). Improving the methane aromatization activity and anti-carbon deposition on MCM-22 through nano α-MoO₃ modification. New Journal of Chemistry. 47, 2949–2956. DOI: 10.1039/D2NJ05415A
  3. Spivey, J.J., Hutchings, G. (2014). Catalytic aromatization of methane. Chemical Society Reviews. 43, 792–803. DOI: 10.1039/C3CS60259A
  4. Emmanuel, A., Devi, P.R., Mathew, T.V. (2024). Reserves and natural gas sources of methane emissions: Greenhouse gas. In Greenhouse Gases Emissions and Climate Change, 53–70. DOI: 10.1016/B978-0-443-19231-9.00017-X
  5. Liu, Y., Ćoza, M., Drozhzhin, V., van den Bosch, Y., Meng, L., van de Poll, R., Hensen, E.J.M., Kosinov, N. (2023). Transition-metal catalysts for methane dehydroaromatization (Mo, Re, Fe): Activity, stability, active sites, and carbon deposits. ACS Catalysis. 13(1), 1–10. DOI: 10.1021/acscatal.2c04962
  6. Kosinov, N., Coumans, F.J.A.G., Uslamin, E.A., Wijpkema, A.S.G., Mezari, B., Hensen, E.J.M. (2017). Methane dehydroaromatization by Mo/HZSM-5: Mono- or bifunctional catalysis. ACS Catalysis. 7(1), 520–529. DOI: 10.1021/acscatal.6b02497
  7. Qi, S., Yang, B. (2004). Methane aromatization using Mo-based catalysts prepared by microwave heating. Catalysis Today. 98, 639–645. DOI: 10.1016/j.cattod.2004.09.049
  8. López-Martín, A., Sini, M.F., Cutrufello, M.G., Caballero, A., Colón, G. (2022). Characterization of Re-Mo/ZSM-5 catalysts: How Re improves the performance of Mo in the methane dehydroaromatization reaction. Applied Catalysis B: Environmental. 304, 120960. DOI: 10.1016/j.apcatb.2021.120960
  9. Wang, L., Ohnishi, R., Ichikawa, M. (2000). Selective dehydroaromatization of methane toward benzene on Re/HZSM-5 catalysts and effects of CO/CO₂ addition. Journal of Catalysis. 190(2), 276–283. DOI: 10.1006/jcat.1999.2748
  10. Tshabalala, T.E., Coville, N.J., Anderson, J.A., Michael, S.S. (2021). Dehydroaromatization of methane over noble metal loaded Mo/H-ZSM-5 zeolite catalysts. Applied Petrochemical Research. 11, 235–248. DOI: 10.1007/s13203-021-00274-y
  11. Pasupulety, N., Al-Zahrani, A.A., Daous, M.A., Driss, H., Petrov, L.A. (2021). Methane aromatization study on M-Mo₂C/HZSM-5 (M = Ce or Pd or Nb) nanomaterials. Journal of Materials Research and Technology. 14, 363–373. DOI: 10.1016/j.jmrt.2021.06.058
  12. Denardin, F., Perez-Lopez, O.W. (2019). Tuning the acidity and reducibility of Fe/ZSM-5 catalysts for methane dehydroaromatization. Fuel. 236, 1293–1300. DOI: 10.1016/j.fuel.2018.09.058
  13. Gan, Y., Xu, Y., Zhang, P., Wang, W., Liu, W., Li, R., Xu, X., Wu, L., Tang, Y., Tan, L. (2024). Boron doped Mo/HMCM-22 catalyst for improving coke resistance in methane dehydroaromatization. Chemical Engineering Science. 299, 120485. DOI: 10.1016/j.ces.2024.120485
  14. Dutta, K., Li, L., Gupta, P., Pacheco Gutierrez, D., Kopyscinski, J. (2018). Direct non-oxidative methane aromatization over gallium nitride catalyst in a continuous flow reactor. Catalysis Communications. 106, 16–19. DOI: 10.1016/j.catcom.2017.12.005
  15. Carneiro, V.M.T., Longo, L.S., Silva, L.F. (2015). Sustainable catalysis using non-endangered metals. In North, M. (Ed.), Sustainable Catalysis: With Non-endangered Metals, Part 2, 212–230. The Royal Society of Chemistry: Cambridge
  16. Rahele, M., Lars-Åke, N., Joseph, H., Jun, L., Michel, W.B., Johanna, R. (2015). Synthesis of two-dimensional molybdenum carbide, Mo₂C, from the gallium based atomic laminate Mo₂Ga₂C. Scripta Materialia. 108, 147–150. DOI: 10.1016/j.scriptamat.2015.07.003
  17. Matthew, Y., Peng, H., Jack, J., Shijun, M., Aiguo, W., Shiyu, K., Richard, G., Lijia, L,, Hua, S. (2018). Co-aromatization of methane with olefins: The role of inner pore and external surface catalytic sites. Applied Catalysis B: Environmental. 234, 1–10. DOI: 10.1016/j.apcatb.2018.04.034
  18. Busca, G. (2017). Acidity and basicity of zeolites: A fundamental approach. Microporous and Mesoporous Materials. 254, 3–16. DOI: 10.1016/j.micromeso.2017.04.007
  19. Wang, L., Chen, Y., Han, G., Li, S., Yang, X., Song, D., Li, K., Li, Q., Zhang, Y., Zhang, J., Zhang L., Xu, C. (2012). Enhanced acidity and dispersion in B-modified HZSM-5 supported metal catalysts. Applied Catalysis A: General. 439–440, 18–25. DOI: 10.1016/j.apcata.2012.07.045
  20. Jialing, C., Tingyu, L., Junfen, L., Sen, W., Zhangfeng, Q., Pengfei, W., Lizhi, H., Weibin, F., Jianguo, W. (2010). Zeolite-based materials for the selective conversion of biomass-derived molecules. Green Chemistry. 12, 238–254. DOI: 10.1021/acscatal.5b02862
  21. Mudi, X., Enhui, X., Xiuzhi, G., Yongrui, W., Ying, O., Guangtong, X., Yibin, L., Xingtian, S. (2019). Ga Substitution during Modification of ZSM-5 and Its Influences on Catalytic Aromatization Performance. Ind. Eng. Chem. Res. 58 (17), 6970–6981. DOI: 10.1021/acs.iecr.9b00295
  22. Meyer, F.J., Barteau, M.A., Lyons, J.E. (1988). Mechanism of molybdenum catalyzed methanol dehydration to dimethyl ether and formaldehyde. Journal of Catalysis. 109, 168–178. DOI: 10.1016/0021-9517(88)90103-0
  23. Nagai, M., Kito, T., Aika, K. (2001). The structure of supported molybdenum oxide catalysts studied by XAFS and XPS. Journal of Physical Chemistry B. 105(43), 10403–10409. DOI: 10.1021/jp011228j
  24. Briggs, D., Seah, M.P. (1990). Practical Surface Analysis, 2nd ed. Wiley: Chichester, UK
  25. Hungria, A.B., Martinez-Arias, A., Fernandez-Garcia, M., Conesa, J.C., Soria, J. (2005). Surface and bulk properties of CeO₂–ZrO₂ solid solutions prepared by a solution combustion method. Journal of Catalysis. 231, 215–230. DOI: 10.1016/j.jcat.2005.01.014
  26. Roozeboom, F., Gellings, P.J., Bouwmeester, H.J.M. (1980). The nature of molybdenum species in MoO₃/TiO₂ catalysts. Journal of Physical Chemistry. 84, 2783–2786. DOI: 10.1021/j100461a019
  27. Omojola, A., Wachs, I.E. (2018). Molecular and electronic structures of MoOx domains supported on alumina: Influence of MoOx domain size. Journal of Physical Chemistry C. 122, 19314–19323. DOI: 10.1021/acs.jpcc.8b04492
  28. Kwan, K., Soon-Bo, L. (1990). FT-IR Studies of Molybdena Supported on Titania. Bull. Korean Chem. Soc. 12, 17–22
  29. Inoue, H., Yamashita, T., Sakamoto, K., Nomura, Y. (1987). XPS study of MoSₓ thin films prepared by the chemical vapor transport method. Journal of Electron Spectroscopy and Related Phenomena. 45, 161–172. DOI: 10.1016/0368-2048(87)85014-2
  30. Briggs, D., Seah, M.P. (1990). Practical Surface Analysis, 2nd ed. Wiley: Chichester, UK
  31. Kwak, J.H., Szanyi, J., Peden, C.H.F. (2003). Acidity of HZSM-5 zeolites: A combined FTIR and TPD study of pyridine adsorption. Applied Catalysis A: General. 254, 245–255. DOI: 10.1016/S0926-860X(03)00269-1
  32. Guisnet, M., Gilson, J.-P. (2002). Zeolites for Cleaner Technologies. Imperial College Press: London, UK
  33. Busca, G. (1995). Acidity and basicity of zeolites: Concepts and experimental tests. Catalysis Today. 27(3–4), 457–496. DOI: 10.1016/0920-5861(95)00061-5
  34. Sonit, B., Ali, H. M., Tuhin, S.K., Pant, K.K. (2020). Boric acid treated HZSM-5 for improved catalyst activity in non-oxidative methane dehydroaromatization. Catal. Sci. Technol. 10, 3857-3867. DOI: 10.1039/D0CY00286K
  35. Liu, S., Iwasa, N., Zhang, Q., Takehira, K. (2003). Effect of Ga modification of HZSM-5 on aromatization of propane and its correlation with acid properties. Applied Catalysis A: General. 240, 145–161. DOI: 10.1016/S0926-860X(02)00416-3
  36. Xiaoguang, G., Guangzong, F., Gang, L., Hao, M., Hongjun, F., Liang, Y., Chao, M., Xing, W., Dehui, D., Mingming, W., Dali, T., Rui, S., Shuo, Z., Jianqi, L., Litao, S., Zichao, T., Xiulian P., Xinhe, B. (2014). Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science. 344, 616–619. DOI: 10.1126/science.1253150
  37. Li, L., Song, W., Zhu, Y., Hensen, E.J.M., Zhang, Q., Wang, Y. (2009). Effect of boron promotion on the structure and performance of Mo/HZSM-5 for non-oxidative methane dehydroaromatization. Journal of Catalysis. 266, 191–200. DOI: 10.1016/j.jcat.2009.06.007
  38. Guisnet, M. (2002). Coke formation and deactivation during the acid-catalyzed conversion of hydrocarbons. Catalysis Today. 81, 305–316. DOI: 10.1016/S0920-5861(03)00056-7
  39. Ertl, G., Knözinger, H., Schüth, F., Weitkamp, J. (2008). Handbook of Heterogeneous Catalysis. Wiley-VCH: Weinheim, Germany
  40. Deepti, M., Arindam, M., Pant, K.K., Xiu, S. Z. (2022). Improved benzene selectivity for methane dehydroaromatization via modifying the zeolitic pores by dual-templating approach. Microporous and Mesoporous Materials. 344, 112172. DOI: 10.1016/j.micromeso.2022.112172

Last update:

No citation recorded.

Last update:

No citation recorded.