skip to main content

Design of Bi-and Tri-metal Oxide Photocatalysts via Gelatin-Directed Mesoporous Silica Hard Templating for Advanced Dye Degradation

Chemistry Education Study Program, Faculty of Teacher Training and Education, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia

Received: 1 Aug 2025; Revised: 21 Sep 2025; Accepted: 22 Sep 2025; Available online: 27 Sep 2025; Published: 26 Dec 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

This study aims to develop a photocatalyst combination of NiO, CuO and ZnO metal oxides modified with mesoporous silica gelatin (mSG) to overcome methylene blue (MB) dye waste through photodegradation process. The photocatalysts were synthesized using the hard template method with mSG as the matrix and tested for their performance towards MB degradation under ultraviolet light. Characterization results showed that the G-Ni-Cu-Zn photocatalyst has a larger surface area, better crystalline structure, nano particle size (~26 nm), and band gap energy of 3.16 eV compared to G-Ni-Zn which has a very low surface area, larger particle morphology (~0.46 μm), and band gap energy of 2.13 eV. Photodegradation tests showed a maximum degradation efficiency of 83.67% by G-Ni-Cu-Zn in 120 minutes, which is much higher than that of G-Ni-Zn. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: photocatalyst; mesoporous silica; hard template; characterization; methylene blue
Funding: Universitas Sebelas Maret under contract PUTA UNS 369/UN27.22/PT.01.03/2025

Article Metrics:

  1. Prasetyoko, D., Sholeha, N.A., Subagyo, R., Ulfa, M., Bahruji, H., Holilah, H., Pradipta, M.F., Jalil, A.A. (2023). Mesoporous ZnO nanoparticles using gelatin - Pluronic F127 as a double colloidal system for methylene blue photodegradation. Korean Journal of Chemical Engineering, 40(1), 112–123. DOI: 10.1007/s11814-022-1224-y
  2. Ulfa, M., Nina, Pangestuti, I., Holilah, Bahruji, H., Rilda, Y., Alias, S.H., Nur, H. (2024). Enhancing photocatalytic activity of Fe2O3/TiO2 with gelatin: A fuzzy logic analysis of mesoporosity and iron loading. South African Journal of Chemical Engineering, 50(August), 245–260. DOI: 10.1016/j.sajce.2024.08.011
  3. de Souza, C.C., de Souza, L.Z.M., Yılmaz, M., de Oliveira, M.A., da Silva Bezerra, A.C., da Silva, E.F., Dumont, M.R., Machado, A.R.T. (2022). Activated carbon of Coriandrum sativum for adsorption of methylene blue: Equilibrium and kinetic modeling. Cleaner Materials, 3 (October 2021). DOI: 10.1016/j.clema.2022.100052
  4. Alkayal, N.S., Altowairki, H., Alosaimi, A.M., Hussein, M.A. (2022). Network template-based cross-linked Poly(methyl methacrylate)/tin(IV) oxide nanocomposites for the photocatalytic degradation of MB under UV irradiation. Journal of Materials Research and Technology, 18, 2721–2734. DOI: 10.1016/j.jmrt.2022.03.133
  5. Wei, J.Q., Chen, X.J., Wang, P.F., Han, Y.B., Xu, J.C., Hong, B., Jin, H.X., Jin, D.F., Peng, X.L., Li, J., Yang, Y.T., Ge, H.L., Wang, X.Q. (2018). High surface area TiO2/SBA-15 nanocomposites: Synthesis, microstructure and adsorption-enhanced photocatalysis. Chemical Physics, 510, 47–53. DOI: 10.1016/j.chemphys.2018.05.012
  6. Weldekirstos, H.D., Habtewold, B., Kabtamu, D.M. (2022). Surfactant-Assisted Synthesis of NiO-ZnO and NiO-CuO Nanocomposites for Enhanced Photocatalytic Degradation of Methylene Blue Under UV Light Irradiation. Frontiers in Materials, 9(April), 1–10. DOI: 10.3389/fmats.2022.832439
  7. Dymerska, A., Zielińska, B., Sielicki, K., Chen, X., Mijowska, E. (2022). Porous silica matrix as an efficient strategy to boosted photocatalytic performance of titania/carbon composite. Diamond and Related Materials, 125(February) DOI: 10.1016/j.diamond.2022.109027
  8. Li, S., Cui, Y., Wen, M., Ji, G. (2023). Toxic Effects of Methylene Blue on the Growth, Reproduction and Physiology of Daphnia magna. Toxics, 11(7) DOI: 10.3390/toxics11070594
  9. Oladoye, P.O., Kadhom, M., Khan, I., Hama Aziz, K.H., Alli, Y.A. (2024). Advancements in adsorption and photodegradation technologies for Rhodamine B dye wastewater treatment: fundamentals, applications, and future directions. Green Chemical Engineering, 5(4), 440–460. DOI: 10.1016/j.gce.2023.12.004
  10. Tongon, W., Chawengkijwanich, C., Chiarakorn, S. (2014). Visible light responsive Ag/TiO2/MCM-41 nanocomposite films synthesized by a microwave assisted sol–gel technique. Superlattices and Microstructures, 69, 108–121. DOI: 10.1016/j.spmi.2014.02.003
  11. Sahu, D., Pervez, S., Karbhal, I., Tamrakar, A., Mishra, A., Verma, S.R., Deb, M.K., Ghosh, K.K., Pervez, Y.F., Shrivas, K., Satnami, M.L. (2024). Applications of different adsorbent materials for the removal of organic and inorganic contaminants from water and wastewater – A review. Desalination and Water Treatment, 317(February), 100253. DOI: 10.1016/j.dwt.2024.100253
  12. Khan, S., Noor, T., Iqbal, N., Yaqoob, L. (2024). Photocatalytic Dye Degradation from Textile Wastewater: A Review. ACS Omega, 9(20), 21751–21767. DOI: 10.1021/acsomega.4c00887
  13. Sun, Y., Zhang, W., Li, Q., Liu, H., Wang, X. (2023). Preparations and applications of zinc oxide based photocatalytic materials. Advanced Sensor and Energy Materials, 2(3), 100069. DOI: 10.1016/j.asems.2023.100069
  14. Zhang, Y., Tang, Z.-R., Fu, X., Xu, Y.-J. (2010). TiO₂-Graphene Nanocomposites for Gas-Phase Photocatalytic Degradation of Volatile Aromatic Pollutant: Is TiO₂-Graphene Truly Different from Other TiO₂-Carbon Composite Materials? ACS Nano, 4(12), 7303–7314. DOI: 10.1021/nn1024219
  15. Li, J., Han, L., Zhang, T., Qu, C., Yu, T., Yang, B. (2022). Removal of Methylene Blue by Metal Oxides Supported by Oily Sludge Pyrolysis Residues. Applied Sciences (Switzerland), 12(9). DOI: 10.3390/app12094725
  16. Albiss, B., Abu-Dalo, M. (2021). Photocatalytic degradation of methylene blue using zinc oxide nanorods grown on activated carbon fibers. Sustainability (Switzerland), 13(9). DOI: 10.3390/su13094729
  17. Kanakaraju, D., bin Ya, M.H., Lim, Y.C., Pace, A. (2020). Combined Adsorption/Photocatalytic dye removal by copper-titania-fly ash composite. Surfaces and Interfaces, 19(January), 100534. DOI: 10.1016/j.surfin.2020.100534
  18. Soleimani-Gorgani, A., Al-Hazmi, H.E., Esmaeili, A., Habibzadeh, S. (2023). Screen-printed Sn-doped TiO2 nanoparticles for photocatalytic dye removal from wastewater: A technological perspective. Environmental Research, 237(P2), 117079. DOI: 10.1016/j.envres.2023.117079
  19. Dhiman, P., Rana, G., Dawi, E.A., Kumar, A., Sharma, G., Kumar, A., Sharma, J. (2023). Tuning the Photocatalytic Performance of Ni-Zn Ferrite Catalyst Using Nd Doping for Solar Light-Driven Catalytic Degradation of Methylene Blue. Water (Switzerland), 15(1). DOI: 10.3390/w15010187
  20. Xu, L., Su, J., Zheng, G., Zhang, L. (2019). Enhanced photocatalytic performance of porous ZnO thin films by CuO nanoparticles surface modification. Materials Science and Engineering: B, 248(January) DOI: 10.1016/j.mseb.2019.114405
  21. Nawaz, A., Farhan, A., Maqbool, F., Ahmad, H., Qayyum, W., Ghazy, E., Rahdar, A., Díez-Pascual, A.M., Fathi-karkan, S. (2024). Zinc oxide nanoparticles: Pathways to micropollutant adsorption, dye removal, and antibacterial actions - A study of mechanisms, challenges, and future prospects. Journal of Molecular Structure, 1312(P1), 138545. DOI: 10.1016/j.molstruc.2024.138545
  22. Costa, J.A.S., De Jesus, R.A., Santos, D.O., Neris, J.B., Figueiredo, R.T., Paranhos, C.M. (2021). Synthesis, functionalization, and environmental application of silica-based mesoporous materials of the M41S and SBA-n families: A review. Journal of Environmental Chemical Engineering, 9(3). DOI: 10.1016/j.jece.2021.105259
  23. Ulfa, M., Anggreani, C.N., Mulyani, B., Sholeha, N.A. (2024). Hexagonal TiO2/SiO2 Porous Microplates for Methylene Blue Photodegradation. Bulletin of Chemical Reaction Engineering & Catalysis, 19(1), 149–159. DOI: 10.9767/bcrec.20120
  24. Kausar, S., Yousaf, M., Mir, S., Awwad, N.S., Alturaifi, H.A., Riaz, F. (2024). Mesoporous Materials: Synthesis and electrochemical applications. Electrochemistry Communications, 169 (October), 107836. DOI: 10.1016/j.elecom.2024.107836
  25. Bastakoti, B.P., Kuila, D., Salomon, C., Konarova, M., Eguchi, M., Na, J., Yamauchi, Y. (2021). Metal-incorporated mesoporous oxides: Synthesis and applications. Journal of Hazardous Materials, 401(June 2020), 123348. DOI: 10.1016/j.jhazmat.2020.123348
  26. Klinkaewnarong, J., Utara, S. (2018). Ultrasonic-assisted conversion of limestone into needle-like hydroxyapatite nanoparticles. Ultrasonics Sonochemistry, 46(March), 18–25. DOI: 10.1016/j.ultsonch.2018.04.002
  27. Ghaedi, H., Zhao, M. (2022). Review on Template Removal Techniques for Synthesis of Mesoporous Silica Materials. Energy and Fuels, 36 (5), 2424–2446. DOI: 10.1021/acs.energyfuels.1c04435
  28. Barczak, M. (2018). Template removal from mesoporous silicas using different methods as a tool for adjusting their properties. New Journal of Chemistry, 42(6), 4182–4191. DOI: 10.1039/c7nj04642a
  29. Yousaf, S., Zulfiqar, S., Shahi, M.N., Warsi, M.F., Al-Khalli, N.F., Aly Aboud, M.F., Shakir, I. (2020). Tuning the structural, optical and electrical properties of NiO nanoparticles prepared by wet chemical route. Ceramics International, 46(3), 3750–3758. DOI: 10.1016/j.ceramint.2019.10.097
  30. Hasnidawani, J.N., Azlina, H.N., Norita, H., Bonnia, N.N., Ratim, S., Ali, E.S. (2016). Synthesis of ZnO Nanostructures Using Sol-Gel Method. Procedia Chemistry, 19, 211–216. DOI: 10.1016/j.proche.2016.03.095
  31. Gokul, G., Thirumaran, S. (2025). Structural, morphological, optical and photocatalytic properties of copper oxide nanoparticles prepared by thermal decomposition of bis(N-dodecyl-N-(4-fluorobenzyl)dithiocarbamato-S,S’)copper(II). Journal of Molecular Structure, 1333 (January), 141686. DOI: 10.1016/j.molstruc.2025.141686
  32. Koe, W.S., Lee, J.W., Chong, W.C. (2019). An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Colloid and Interface Science Journal, 44. DOI: 10.1007/s11356-019-07193-5
  33. Naffeti, M., Zaïbi, M.A., Nefzi, C., García-Arias, A.V., Chtourou, R., Postigo, P.A. (2023). Highly efficient photodegradation of methylene blue by a composite photocatalyst of bismuth nanoparticles on silicon nanowires. Environmental Technology and Innovation, 30. DOI: 10.1016/j.eti.2023.103133
  34. Raizada, P., Soni, V., Kumar, A., Singh, P., Parwaz Khan, A.A., Asiri, A.M., Thakur, V.K., Nguyen, V.H. (2021). Surface defect engineering of metal oxides photocatalyst for energy application and water treatment. Journal of Materiomics, 7(2), 388–418. DOI: 10.1016/j.jmat.2020.10.009
  35. Dien, N.D., Thu Ha, P.T., Vu, X.H., Trang, T.T., Thanh Giang, T.D., Dung, N.T. (2023). Developing efficient CuO nanoplate/ZnO nanoparticle hybrid photocatalysts for methylene blue degradation under visible light. RSC Advances, 13(35), 24505–24518. DOI: 10.1039/d3ra03791f
  36. Ishaque, M.Z., Zaman, Y., Arif, A., Siddique, A.B., Shahzad, M., Ali, D., Aslam, M., Zaman, H., Faizan, M. (2023). Fabrication of ternary metal oxide (ZnO:NiO:CuO) nanocomposite heterojunctions for enhanced photocatalytic and antibacterial applications. RSC Advances, 13(44), 30838–30854. DOI: 10.1039/d3ra05170f
  37. Ulfa, M., Nur, C., Amalia, N. (2023). Fine-tuning mesoporous silica properties by a dual-template ratio as TiO2 support for dye photodegradation booster. Heliyon, 9(6), e16275. DOI: 10.1016/j.heliyon.2023.e16275
  38. Ulfa, M., Salsabila, P.R., Saputro, A.N.C., Nurhayati, N.D. (2025). Methylene Blue Degradation with Sulfonated SPG20 Silica-Fe2O3 Hybrid Photocatalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 20 (3), 441–457. DOI: 10.9767/bcrec.20380
  39. Iasya, Y.K.A.A., Khoerunnisa, F., Dewi, S.S., Putri, R.A., Nurhayati, M., Arrozi, U.S.F., Permana, Y., Handayani, M., Astuti, W.D., Da, O.W., Irnanda, I. (2025). Synergetic effect of ZnO/NiO nanocomposite on the enhancement of photocatalytic degradation efficiency of dyes molecules. Communications in Science and Technology, 10(1), 1–9. DOI: 10.21924/cst.10.1.2025.1583
  40. Shaikh, B., Bhatti, M.A., Shah, A.A., Tahira, A., Shah, A.K., Usto, A., Aftab, U., Bukhari, S.I., Alshehri, S., Shah Bukhari, S.N.U., Tonezzer, M., Vigolo, B., Ibhupoto, Z.H. (2022). Mn3O4@ZnO Hybrid Material: An Excellent Photocatalyst for the Degradation of Synthetic Dyes including Methylene Blue, Methyl Orange and Malachite Green. Nanomaterials, 12 (21), 1–16. DOI: 10.3390/nano12213754
  41. Chen, S., Farzinpour, F., Kornienko, N. (2025). Dynamic active sites behind Cu-based electrocatalysts: Original or restructuring-induced catalytic activity. Chem, 11(8), 102575. DOI: 10.1016/j.chempr.2025.102575

Last update:

No citation recorded.

Last update:

No citation recorded.