skip to main content

Charge Transport Kinetics in Fluorine-Doped Tin Oxide/Titanium Dioxide/Cadmium Sulfide/Cadmium Selenide Doped with Copper(II)/Zinc Sulfide Photoanode

1Vinh Long University of Technology Education, Vinh Long Province, Viet Nam

2Department of Chemistry, Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy, Can Tho 94000, Viet Nam

3Dong Thap University, Dong Thap Province, Viet Nam

4 Department of Physics, Nirmalagiri College, Nirmalagiri, 670701, India

View all affiliations
Received: 29 Jul 2025; Revised: 13 Sep 2025; Accepted: 13 Sep 2025; Available online: 22 Sep 2025; Published: 26 Dec 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Quantum dot-sensitized solar cells face major limitations due to electron recombination, which reduces their overall efficiency. To address this challenge, we investigated copper-doped cadmium selenide as a novel approach to enhance charge transport in multilayer photoanodes. The objective of this study was to evaluate the effect of copper doping concentration on charge transport kinetics in TiO₂@CdS@CdSe:Cu²⁺@ZnS photoanodes. Photoanodes with varying Cu contents (0–0.5 mol) were fabricated using the successive ionic layer adsorption and reaction method, followed by ZnS passivation. Electrochemical impedance spectroscopy and current–voltage characterization were employed to analyze charge transfer resistance, fill factor, power conversion efficiency, open-circuit voltage, and short-circuit current density. The optimized Cu(0.2) sample achieved the highest efficiency of 4.68% with a short-circuit current density of 27.35 mA/cm², attributed to improved charge transport, reduced recombination, and enhanced light absorption. However, excessive doping increased recombination and induced structural degradation. In conclusion, appropriate copper doping significantly improves the performance of QDSSCs, providing insights for designing advanced quantum absorber structures in next-generation solar cell technologies. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Nanoscrystals; Quantum dot; Solar cell; High efficiency

Article Metrics:

  1. Hu, Y., Shan, Y., Yu, Z., Sui, H., Qiu, T., Zhang, S., Ruan, W., Xu, Q., Jiao, M., Wang, D., Wu, Y. (2022). Incorporation of γ-aminobutyric acid and cesium cations to formamidinium lead halide perovskites for highly efficient solar cells. Nano Energy, 64, 561–567. DOI: 10.1016/j.jechem.2021.05.025
  2. Luo, D., Li, L., Shi, Y., Zhang, J., Wang, K., Guo, X., Kyaw, A.K.K. (2021). Electron-deficient diketone unit engineering for non-fused ring acceptors enabling over 13% efficiency in organic solar cells. Journal of Materials Chemistry A, 9(26), 14948–14957. DOI: 10.1039/D1TA03643B
  3. Rühle, S., Shalom, M., & Zaban, A. J. (2010). Quantum‐dot‐sensitized solar cells. ChemPhysChem, 11(11), 2290–2304. DOI: 10.1002/cphc.201000069
  4. Cohn, A.W., Schimpf, A.M., Gunthardt, C.E., Gamelin, D.R. (2013). Size-dependent trap-assisted Auger recombination in semiconductor nanocrystals. Nano Letters, 13(4), 1810–1815. DOI: 10.1021/nl400503s
  5. Zhang, Y., Liu, J., Li, S.-L., Su, Y.-M., Lan, Y.-Q. (2019). Polyoxometalate-based materials for sustainable and clean energy conversion and storage. EnergyChem, 1(3), 100021. DOI: 10.1016/j.enchem.2019.100021
  6. Tian, J., Zhang, Q., Uchaker, E., Gao, R., Qu, X., Zhang, S., Cao, G. (2013). Architectured ZnO photoelectrode for high efficiency quantum dot sensitized solar cells. Energy & Environmental Science, 6(12), 3542–3547. DOI: 10.1039/C3EE41056K
  7. Bang, J.H., Kamat, P.V. (2009). Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano, 3(6), 1467–1476. DOI: 10.1021/nn900324q
  8. González-Pedro, V., Shen, Q., Jovanovski, V., Giménez, S., Tena-Zaera, R., Toyoda, T., Mora-Seró, I. (2013). Ultrafast characterization of the electron injection from CdSe quantum dots and dye N719 co-sensitizers into TiO₂ using sulfide based ionic liquid for enhanced longterm stability. Electrochimica Acta, 100, 35–43. DOI: 10.1016/j.electacta.2013.03.119
  9. Schaller, R.D., Klimov, V.I. (2004). High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Physical Review Letters, 92(18), 186601. DOI: 10.1103/PhysRevLett.92.186601
  10. Hara, K., Sayama, K., Ohga, Y., Shinpo, A., Suga, S., Arakawa, H. (2018). A Coumarin-derivative dye-sensitized nanocrystalline TiO₂ solar cell having a high solar energy conversion efficiency up to 5.6 percent. Renewable Energy, 2, 214–218. DOI: 10.1039/B010058G
  11. Sun, J.-K., Jiang, Y., Zhong, X., Hu, J.-S., Wan, L.-J. (2017). Three-dimensional nanostructured electrodes for efficient quantum-dot-sensitized solar cells. Nano Energy, 32, 130–156. DOI: 10.1016/j.nanoen.2016.12.022
  12. Pawar, S.A., Patil, D.S., Jung, H.R., Park, J.Y., Mali, S.S., Hong, C.K., Shin, J.-C., Patil, P.S., Kim, J.-H. (2016). Quantum dot sensitized solar cell based on TiO₂/CdS/CdSe/ZnS heterostructure. Electrochimica Acta, 203, 74–83. DOI: 10.1016/j.electacta.2016.04.029
  13. Zhang, Y., Zhu, J., Yu, X., Wei, J., Hu, L., Dai, S. (2012). The optical and electrochemical properties of CdS/CdSe co-sensitized TiO₂ solar cells prepared by successive ionic layer adsorption and reaction processes. Solar Energy, 86(3), 964–971. DOI: 10.1016/j.solener.2012.01.006
  14. Zhou, R., Zhang, Q., Uchaker, E., Lan, J., Yin, M., Cao, G. (2014). Mesoporous TiO₂ beads for high efficiency CdS/CdSe quantum dot co-sensitized solar cells. ACS Applied Materials & Interfaces, 2(8), 2517–2525. DOI: 10.1039/C3TA13460A
  15. Mora-Sero, I., Giménez, S., Fabregat-Santiago, F., Gómez, R., Shen, Q., Toyoda, T., Bisquert, J. (2009). Recombination in quantum dot sensitized solar cells. Accounts of Chemical Research, 42(11), 1848–1857. DOI: 10.1021/ar900134d
  16. Dai, Qilin, Erwin M. Sabio, Wenyong Wang, and Jinke Tang (2014). Pulsed laser deposition of Mn doped CdSe quantum dots for improved solar cell performance. Applied Physics Letters, 104(18). DOI: 10.1063/1.4875107
  17. Thao, N.T., Phuong, H.N., Tung, H.T., Phat, N.T., Dat, H.T., Vinh, L.Q. (2018). The enhanced current density of the quantum dots solar cells based on CdSe:Mn²⁺ crystalline. Optical Materials, 84, 199–204. DOI: 10.1016/j.optmat.2018.06.069
  18. Nguyen, T.P., Ha, T.T., Nguyen, T.T., Ho, N.P., Huynh, T.D., Lam, Q.V. (2018). Effect of Cu²⁺ ions doped on the photovoltaic features of CdSe quantum dot sensitized solar cells. Electrochimica Acta, 282, 16–23. DOI: 10.1016/j.electacta.2018.06.046
  19. Yang, J., Mei, S., & Ferreira, J. M. (2002). Hydrothermal synthesis of well-dispersed TiO₂ nano-crystals. Journal of Materials Research, 17(9), 2197–2200. DOI: 10.1557/JMR.2002.0323
  20. Shen, Q., Kobayashi, J., Diguna, L.J., Toyoda, T. (2008). Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. Journal of Applied Physics, 103(8). DOI: 10.1063/1.2903059
  21. Ebothé, J., Michel, J., Kityk, I.V., Lakshminarayana, G., Yanchuk, O.M., Marchuk, O.V. (2018). Influence of CdS nanoparticles grain morphology on laser-induced absorption. Physica E, 100, 69–72. DOI: 10.1016/j.physe.2018.03.002
  22. Thanh, T. H., Quang, V. L., & Thanh, D. H. (2015). Determination of the dynamic resistance of the quantum dots solar cells by one I–V curve and electrochemical impedance spectra. Solar Energy Materials and Solar Cells, 141, 167–172. DOI: 10.1016/j.solmat.2015.07.007
  23. Sun, J.K., Jiang, Y., Zhong, X., Hu, J. S., Wan, L. J. (2017). Three-dimensional nanostructured electrodes for efficient quantum-dot-sensitized solar cells. Nano Energy, 32, 130-156. DOI: 10.1016/j.nanoen.2016.12.022
  24. Li, C., Yang, L., Xiao, J., Wu, Y.-C., Søndergaard, M., Luo, Y., Li, D., Meng, Q., Iversen, B.B. (2013). ZnO nanoparticle based highly efficient CdS/CdSe quantum dot-sensitized solar cells. Physical Chemistry Chemical Physics, 15(22), 8710–8715. DOI: 10.1039/C3CP50365H
  25. Hsu, Y.J., Lu, S.Y., Lin, Y.F. (2005). One‐step preparation of coaxial CdS–ZnS and Cd₁–ₓZnₓS–ZnS nanowires. Advanced Functional Materials, 15(8), 1350–1357. DOI: 10.1002/adfm.200400563
  26. Klimov, V.I., Mikhailovsky, A.A., Xu, S., Malko, A., Hollingsworth, J.A., Leatherdale, A.C.A., Eisler, H.-J., Bawendi, M.G. (2000). Optical gain and stimulated emission in nanocrystal quantum dots. Science, 290(5490), 314–317. DOI: 10.1126/science.290.5490.314
  27. Roy, A., Mohamed, M.J.S., Gondal, M.A., Mallick, T.K., Tahir, A.A., Sundaram, S. (2023). Co-sensitization effect of N719 dye with Cu doped CdS colloidal nanoparticles for dye sensitized solar cells. Inorganic Chemistry Communications, 148, 110298. DOI: 10.1016/j.inoche.2022.110298
  28. Tarimo, D.J., Oyedotun, K.O., Mirghin, A., Sylla, N.F., Manyala, N. (2022). Asymmetric ultracapacitor produced by sulphur reduced graphene oxide/metal oxide composite with high energy density and outstanding cycling. In Electrochemical Society Meeting Abstracts (Vol. 242). The Electrochemical Society, Inc. DOI: 10.1149/MA2022-02169mtgabs
  29. Hou, J., Zhao, H., Huang, F., Jing, Q., Cao, H., Wu, Q., Peng, S., Cao, G. (2016). High performance of Mn-doped CdSe quantum dot sensitized solar cells based on the vertical ZnO nanorod arrays. Journal of Power Sources, 325, 438–445. DOI: 10.1016/j.jpowsour.2016.06.070
  30. Zhang, C., Liu, S., Liu, X., Deng, F., Xiong, Y., Tsai, F.-C. (2018). Incorporation of Mn²⁺ into CdSe quantum dots by chemical bath co-deposition method for photovoltaic enhancement of quantum dot-sensitized solar cells. Royal Society Open Science, 5(3), 171712. DOI: 10.1098/rsos.171712
  31. Li, Z., Yu, L., Liu, Y., Sun, S. (2015). Efficient quantum dot-sensitized solar cell based on CdSₓSe₁₋ₓ/Mn-CdS/TiO₂ nanotube array electrode. Electrochimica Acta, 153, 200–209. DOI: 10.1016/j.electacta.2014.11.197
  32. Muthalif, M.P.A., Lee, Y.-S., Sunesh, C.D., Kim, H.-J., Choe, Y. (2017). Enhanced photovoltaic performance of quantum dot-sensitized solar cells with a progressive reduction of recombination using Cu-doped CdS quantum dots. Applied Surface Science, 396, 582–589. DOI: 10.1016/j.apsusc.2016.10.200
  33. Thanh, T.H., Lam, Q.V., Nguyen, T.H., Huynh, T.D. (2013). Performance of CdS/CdSe/ZnS quantum dot-sensitized TiO₂ mesopores for solar cells. Chinese Optics Letters, 11(7), 072501. DOI: 10.3788/COL201311.072501
  34. Chang, Y.-S., Choi, M., Baek, M., Hsieh, P.-Y., Yong, K., Hsu, Y.-J. (2018). CdS/CdSe co-sensitized brookite H:TiO₂ nanostructures: Charge carrier dynamics and photoelectrochemical hydrogen generation. Applied Catalysis B: Environmental, 225, 379–385. DOI: 10.1016/j.apcatb.2017.11.063
  35. Chang, Y.-S., Hsieh, P.-Y., Chang, T.-F.M., Chen, C.-Y., Sone, M., Hsu, Y.-J. (2020). Incorporating graphene quantum dots to enhance the photoactivity of CdSe-sensitized TiO₂ nanorods for solar hydrogen production. Journal of Materials Chemistry A, 8(28), 13971–13979. DOI: 10.1039/D0TA02359K

Last update:

No citation recorded.

Last update:

No citation recorded.