skip to main content

Strategic Synthesis of Hierarchical Co3O4/ZSM-5 Zeolite as A Catalyst in Partial Oxidation of Methane: Bottom-up vs Top-down Methods

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia

2Solid Inorganic Framework Laboratory, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia

Received: 12 Jul 2025; Revised: 30 Jul 2025; Accepted: 31 Jul 2025; Available online: 18 Aug 2025; Published: 31 Oct 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Methane, a potent greenhouse gas contributing approximately 19% to global warming and possessing a global warming potential 28 times greater than carbon dioxide, necessitates conversion into more beneficial chemicals. Partial oxidation of methane to methanol is a promising conversion method which is both time- and cost-efficient. This study synthesized ZSM-5 using two strategic syntheses: Bottom-Up and Top-Down, followed by cobalt oxide impregnation at varying percentages 2.5, 5, and 10% (w/w) to produce Co3O4/ZSM-5. To investigate its physicochemical properties, ZSM-5 catalysts were thoroughly characterized with XRD, FTIR, XRF, N2-physisorption, and SEM. These catalysts were then evaluated in methane partial oxidation reactions conducted in a batch reactor, with a CH4:N2 feed ratio of 0.75 bar:2 bar, at 150 °C for 60 minutes. Co3O4-supported Bottom-Up ZSM-5 with 5% Co-loading demonstrated the largest percentage yield of 62.08% compared to the other Co-loading amount and ZSM-5 synthesized via Top-Down method. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Hierarchical ZSM-5; Co3O4; Bottom-up; Top-down; Partial Oxidation of Methane
Funding: Pendidikan Magister menuju Doktor untuk Sarjana Unggul (PMDSU) under contract NKB-798/UN2.RST/HKP.05.00/2024; Beasiswa Peningkatan Kualitas Publikasi Internasional under contract 165.31/E4.4/KU/2023

Article Metrics:

  1. Dasireddy, V.D.B.C., Likozar, B. (2021). Direct methanol production from mixed methane/H2O/N2O feedstocks over Cu–Fe/Al2O3 catalysts. Fuel, 301. DOI: 10.1016/J.FUEL.2021.121084
  2. Al-Ghussain, L. (2019). Global warming: review on driving forces and mitigation. Environmental Progress & Sustainable Energy, 38(1), 13–21. DOI: 10.1002/EP.13041
  3. Litto, R., Hayes, R.E., Liu, B. (2007). Capturing fugitive methane emissions from natural gas compressor buildings. Journal of Environmental Management, 84(3), 347–361. DOI: 10.1016/J.JENVMAN.2006.06.007
  4. Ravi, M., Ranocchiari, M., van Bokhoven, J.A. (2017). The Direct Catalytic Oxidation of Methane to Methanol—A Critical Assessment. Angewandte Chemie International Edition, 56(52), 16464–16483. DOI: 10.1002/ANIE.201702550
  5. Kumar, A., Prasad, R., Sharma, Y.C. (2019). Ethanol steam reforming study over ZSM-5 supported cobalt versus nickel catalyst for renewable hydrogen generation. Chinese Journal of Chemical Engineering, 27(3), 677–684. DOI: 10.1016/J.CJCHE.2018.03.036
  6. Smith, M.R., Ozkan, U.S. (1993). The Partial Oxidation of Methane to Formaldehyde: Role of Different Crystal Planes of MoO3. Journal of Catalysis, 141(1), 124–139. DOI: 10.1006/JCAT.1993.1124
  7. Spencer, N.D., Pereira, C.J. (1989). V2O5-SiO2-catalyzed methane partial oxidation with molecular oxygen. Journal of Catalysis, 116(2), 399–406. DOI: 10.1016/0021-9517(89)90106-1
  8. Lyons, J.E., Ellis, P.E., Durante, V.A. (1991). Active Iron Oxo Centers for the Selective Catalytic Oxidation of Alkanes. Studies in Surface Science and Catalysis, 67(C), 99–116. DOI: 10.1016/S0167-2991(08)61930-8
  9. Vadodaria, D.M., Al-Fatesh, A.S., Alrashed, M.M., Alhoshan, M., Ibrahim, A.A., Kumar, N.S., Kumar, R. (2025). A comprehensive review on catalytic oxidation of methane in the presence of molecular oxygen: total oxidation, partial oxidation and selective oxidation. Catalysis Reviews, 1–47. DOI: 10.1080/01614940.2025.2535991
  10. Sudarsanam, P., Peeters, E., Makshina, E. V., Parvulescu, V.I., Sels, B.F. (2019). Advances in porous and nanoscale catalysts for viable biomass conversion. Chemical Society Reviews, 48(8), 2366–2421. DOI: 10.1039/C8CS00452H
  11. Alanazi, R.S.A., Alreshaidan, S.B., Ibrahim, A.A., Wazeer, I., Alarifi, N., Bellahwel, O.A., Abasaeed, A.E., Al-Fatesh, A.S. (2025). Influence of Alumina and Silica Supports on the Performance of Nickel Catalysts for Methane Partial Oxidation. Catalysts, 15(2), 102. DOI: 10.3390/CATAL15020102/S1
  12. Saha, D., Comroe, M., Krishna, R. (2021). Synthesis of Cu(I) doped mesoporous carbon for selective capture of ethylene from reaction products of oxidative coupling of methane (OCM). Microporous and Mesoporous Materials, 328, 111488. DOI: 10.1016/J.MICROMESO.2021.111488
  13. Ma, L., Ding, C., Wang, J., Li, Y., Xue, Y., Guo, J., Zhang, K., Liu, P., Gao, X. (2019). Highly dispersed Pt nanoparticles confined within hierarchical pores of silicalite-1 zeolite via crystal transformation of supported Pt/S-1 catalyst for partial oxidation of methane to syngas. International Journal of Hydrogen Energy, 44(39), 21847–21857. DOI: 10.1016/J.IJHYDENE.2019.06.051
  14. Dinh, K.T., Sullivan, M.M., Serna, P., Meyer, R.J., Dincǎ, M., Román-Leshkov, Y. (2018). Viewpoint on the Partial Oxidation of Methane to Methanol Using Cu- and Fe-Exchanged Zeolites. ACS Catalysis, 8(9), 8306–8313. DOI: 10.1021/ACSCATAL.8b01180
  15. Singh, L., Rekha, P., Chand, S. (2018). Comparative evaluation of synthesis routes of Cu/zeolite Y catalysts for catalytic wet peroxide oxidation of quinoline in fixed-bed reactor. Journal of Environmental Management, 215, 1–12. DOI: 10.1016/J.JENVMAN.2018.03.021
  16. Michalkiewicz, B. (2004). Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe-ZSM-5. Applied Catalysis A: General, 277(1–2), 147–153. DOI: 10.1016/J.APCATA.2004.09.005
  17. Beznis, N. V., Van Laak, A.N.C., Weckhuysen, B.M., Bitter, J.H. (2011). Oxidation of methane to methanol and formaldehyde over Co–ZSM-5 molecular sieves: Tuning the reactivity and selectivity by alkaline and acid treatments of the zeolite ZSM-5 agglomerates. Microporous and Mesoporous Materials, 138(1–3), 176–183. DOI: 10.1016/J.MICROMESO.2010.09.009
  18. Krisnandi, Y.K., Putra, B.A.P., Bahtiar, M., Zahara, Abdullah, I., Howe, R.F. (2015). Partial Oxidation of Methane to Methanol over Heterogeneous Catalyst Co/ZSM-5. Procedia Chemistry, 14, 508–515. DOI: 10.1016/J.PROCHE.2015.03.068
  19. Khatrin, I., Abdullah, I., McCue, A.J., Krisnandi, Y.K. (2024). Mesoporous configuration effects on the physicochemical features of hierarchical ZSM-5 supported cobalt oxide as catalysts in methane partial oxidation. Microporous and Mesoporous Materials, 365, 112896. DOI: 10.1016/J.MICROMESO.2023.112896
  20. Jia, X., Khan, W., Wu, Z., Choi, J., Yip, A.C.K. (2019). Modern synthesis strategies for hierarchical zeolites: Bottom-up versus top-down strategies. Advanced Powder Technology, 30(3), 467–484. DOI: 10.1016/J.APT.2018.12.014
  21. Ogura, M., Shinomiya, S.Y., Tateno, J., Nara, Y., Kikuchi, E., Matsukata, M. (2000). Formation of Uniform Mesopores in ZSM-5 Zeolite through Treatment in Alkaline Solution. Chemistry Letters, 29(8), 882–883. DOI: 10.1246/CL.2000.882
  22. Ahmad, K., Upadhyayula, S. (2019). Conversion of the greenhouse gas CO2 to methanol over supported intermetallic Ga–Ni catalysts at atmospheric pressure: thermodynamic modeling and experimental study. Sustainable Energy & Fuels, 3(9), 2509–2520. DOI: 10.1039/C9SE00165D
  23. Syeitkhajy, A., Hamid, M.A., Boroglu, M.S., Boz, I. (2025). Efficient synthesis of phosphorus-promoted and alkali-modified ZSM-5 catalyst for catalytic dehydration of lactic acid to acrylic acid. Results in Chemistry, 13, 101942. DOI: 10.1016/J.RECHEM.2024.101942
  24. Treacy, M.M.J., Higgins, J.B. (2007). ZSM-5, Calcined. Collection of Simulated XRD Powder Patterns for Zeolites, 278–279. DOI: 10.1016/B978-044453067-7/50604-3
  25. Gille, T., Seifert, M., Marschall, M.S., Bredow, S., Schneider, T., Busse, O., Reschetilowski, W., Weigand, J.J. (2021). Conversion of Oxygenates on H-ZSM-5 Zeolites—Effects of Feed Structure and Si/Al Ratio on the Product Quality. Catalysts, 11(4), 432. DOI: 10.3390/CATAL11040432
  26. Min, J.E., Kim, S., Kwak, G., Kim, Y.T., Han, S.J., Lee, Y., Jun, K.W., Kim, S.K. (2018). Role of mesopores in Co/ZSM-5 for the direct synthesis of liquid fuel by Fischer–Tropsch synthesis. Catalysis Science & Technology, 8(24), 6346–6359. DOI: 10.1039/C8CY01931B
  27. Nada, M.H., Larsen, S.C. (2017). Insight into seed-assisted template free synthesis of ZSM-5 zeolites. Microporous and Mesoporous Materials, 239, 444–452. DOI: 10.1016/J.MICROMESO.2016.10.040
  28. Liu, C.F., He, L.C., Wang, X.F., Chen, J., Lu, J.Q., Luo, M.F. (2022). Tailoring Co3O4 active species to promote propane combustion over Co3O4/ZSM-5 catalyst. Molecular Catalysis, 524, 112297. DOI: 10.1016/J.MCAT.2022.112297
  29. Sridhar, A., Rahman, M., Infantes-Molina, A., Wylie, B.J., Borcik, C.G., Khatib, S.J. (2020). Bimetallic Mo-Co/ZSM-5 and Mo-Ni/ZSM-5 catalysts for methane dehydroaromatization: A study of the effect of pretreatment and metal loadings on the catalytic behavior. Applied Catalysis A: General, 589, 117247. DOI: 10.1016/J.APCATA.2019.117247
  30. Zhang, J., Xiong, Z., Wei, J., Song, Y., Ren, Y., Xu, D., Lai, B. (2020). Catalytic ozonation of penicillin G using cerium-loaded natural zeolite (CZ): Efficacy, mechanisms, pathways and toxicity assessment. Chemical Engineering Journal, 383, 123144. DOI: 10.1016/J.CEJ.2019.123144
  31. Guan, X., Duan, C., Wang, H., Lu, B., Zhao, J., Cai, Q. (2021). Tuneable oxidation of styrene to benzaldehyde and benzoic acid over Co/ZSM-5. New Journal of Chemistry, 45(38), 18192–18201. DOI: 10.1039/D1NJ03145G
  32. Al-Jubouri, S.M. (2020). Synthesis of hierarchically porous ZSM-5 zeolite by self-assembly induced by aging in the absence of seeding-assistance. Microporous and Mesoporous Materials, 303, 110296. DOI: 10.1016/J.MICROMESO.2020.110296
  33. Kostyniuk, A., Key, D., Mdleleni, M. (2020). 1-hexene isomerization over bimetallic M-Mo-ZSM-5 (M: Fe, Co, Ni) zeolite catalysts: Effects of transition metals addition on the catalytic performance. Journal of the Energy Institute, 93(2), 552–564. DOI: 10.1016/J.JOEI.2019.06.009
  34. Howe, R.F. (2016). Synchrotron Infrared Spectroscopy of Microporous Materials. Makara Journal of Science, 20(2) DOI: 10.7454/MSS.V20I2.5950
  35. Serrano, D.P., Pinnavaia, T.J., Aguado, J., Escola, J.M., Peral, A., Villalba, L. (2014). Hierarchical ZSM-5 zeolites synthesized by silanization of protozeolitic units: Mediating the mesoporosity contribution by changing the organosilane type. Catalysis Today, 227, 15–25. DOI: 10.1016/J.CATTOD.2013.10.052
  36. Luo, W., Yang, X., Wang, Z., Huang, W., Chen, J., Jiang, W., Wang, L., Cheng, X., Deng, Y., Zhao, D. (2017). Synthesis of ZSM-5 aggregates made of zeolite nanocrystals through a simple solvent-free method. Microporous and Mesoporous Materials, 243, 112–118. DOI: 10.1016/J.MICROMESO.2017.01.040
  37. Song, G., Chen, W., Dang, P., Yang, S., Zhang, Y., Wang, Y., Xiao, R., Ma, R., Li, F. (2018). Synthesis and Characterization of Hierarchical ZSM-5 Zeolites with Outstanding Mesoporosity and Excellent Catalytic Properties. Nanoscale Research Letters, 13(1), 1–13. DOI: 10.1186/S11671-018-2779-8
  38. Sabarish, R., Unnikrishnan, G. (2017). Synthesis, characterization and catalytic activity of hierarchical ZSM-5 templated by carboxymethyl cellulose. Powder Technology, 320, 412–419. DOI: 10.1016/J.POWTEC.2017.07.041
  39. Donaldson, P.M., Hawkins, A.P., Howe, R.F. (2025). Distinctive signatures and ultrafast dynamics of Brønsted sites, silanol nests and adsorbed water in zeolites revealed by 2D-IR spectroscopy. Chemical Science, 16(16), 6688–6704. DOI: 10.1039/D4SC08093A
  40. Fan, C., Wu, Z., Li, Z., Qin, Z., Zhu, H., Dong, M., Wang, J., Fan, W. (2023). Controllable preparation of ultrafine Co3O4 nanoparticles on H-ZSM-5 with superior catalytic performance in lean methane combustion. Fuel, 334, 126815. DOI: 10.1016/J.FUEL.2022.126815
  41. Ba Mohammed, B., Hsini, A., Abdellaoui, Y., Abou Oualid, H., Laabd, M., El Ouardi, M., Ait Addi, A., Yamni, K., Tijani, N. (2020). Fe-ZSM-5 zeolite for efficient removal of basic Fuchsin dye from aqueous solutions: Synthesis, characterization and adsorption process optimization using BBD-RSM modeling. Journal of Environmental Chemical Engineering, 8(5), 104419. DOI: 10.1016/J.JECE.2020.104419
  42. Qiao, K., Zhou, F., Han, Z., Fu, J., Ma, H., Wu, G. (2019). Synthesis and physicochemical characterization of hierarchical ZSM-5: Effect of organosilanes on the catalyst properties and performance in the catalytic fast pyrolysis of biomass. Microporous and Mesoporous Materials, 274, 190–197. DOI: 10.1016/J.MICROMESO.2018.07.028
  43. Chen, K., Zhang, T., Chen, X., He, Y., Liang, X. (2018). Model construction of micro-pores in shale: A case study of Silurian Longmaxi Formation shale in Dianqianbei area, SW China. Petroleum Exploration and Development, 45(3), 412–421. DOI: 10.1016/S1876-3804(18)30046-6
  44. Octaviani, S., Krisnandi, Y.K., Abdullah, I., Sihombing, R. (2012). The Effect of Alkaline Treatment to the Structure of ZSM5 Zeolites. Makara Journal of Science, 16(3), 155–162. DOI: 10.7454/mss.v16i3.1476/Makara
  45. Liu, C., Chen, Y., Zhao, Y., Lyu, S., Wei, L., Li, X., Zhang, Y., Li, J. (2020). Nano-ZSM-5-supported cobalt for the production of liquid fuel in Fischer-Tropsch synthesis: Effect of preparation method and reaction temperature. Fuel, 263, 116619. DOI: 10.1016/J.FUEL.2019.116619
  46. Kadja, G.T.M., Suprianti, T.R., Ilmi, M.M., Khalil, M., Mukti, R.R., Subagjo (2020). Sequential mechanochemical and recrystallization methods for synthesizing hierarchically porous ZSM-5 zeolites. Microporous and Mesoporous Materials, 308 DOI: 10.1016/J.MICROMESO.2020.110550
  47. Khatrin, I., Kusuma, R.H., Kadja, G.T.M., Krisnandi, Y.K. (2023). Significance of ZSM-5 hierarchical structure on catalytic cracking: Intra- vs inter-crystalline mesoporosity. Inorganic Chemistry Communications, 149, 110447. DOI: 10.1016/J.INOCHE.2023.110447
  48. Verboekend, D., Mitchell, S., Milina, M., Groen, J.C., Pérez-Ramírez, J. (2011). Full compositional flexibility in the preparation of mesoporous MFI zeolites by desilication. Journal of Physical Chemistry C, 115(29), 14193–14203. DOI: 10.1021/JP201671S
  49. Bonilla, A., Baudouin, D., Pérez-Ramírez, J. (2009). Desilication of ferrierite zeolite for porosity generation and improved effectiveness in polyethylene pyrolysis. Journal of Catalysis, 265(2), 170–180. DOI: 10.1016/J.JCAT.2009.04.022
  50. Sang, S., Chang, F., Liu, Z., He, C., He, Y., Xu, L. (2004). Difference of ZSM-5 zeolites synthesized with various templates. Catalysis Today, 93–95, 729–734. DOI: 10.1016/J.CATTOD.2004.06.091
  51. Zhu, Z., Lu, G., Zhang, Z., Guo, Y., Guo, Y., Wang, Y. (2013). Highly active and stable Co3O4/ZSM-5 catalyst for propane oxidation: Effect of the preparation method. ACS Catalysis, 3(6), 1154–1164. DOI: 10.1021/CS400068V
  52. Krisnandi, Y.K., Nurani, D.A., Alfian, D. V., Sofyani, U., Faisal, M., Saragi, I.R., Pamungkas, A.Z., Pratama, A.P. (2021). The new challenge of partial oxidation of methane over Fe2O3/NaY and Fe3O4/NaY heterogeneous catalysts. Heliyon, 7(11). DOI: 10.1016/j.heliyon.2021.e08305
  53. Ghaedi, M., Izadbakhsh, A. (2021). Effects of Ca content on the activity of HZSM-5 nanoparticles in the conversion of methanol to olefins and coke formation. Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 49(10), 1468–1486. DOI: 10.1016/S1872-5813(21)60130-5
  54. An, B., Li, Z., Wang, Z., Zeng, X., Han, X., Cheng, Y., Sheveleva, A.M., Zhang, Z., Tuna, F., McInnes, E.J.L., Frogley, M.D., Ramirez-Cuesta, A.J., S. Natrajan, L., Wang, C., Lin, W., Yang, S., Schröder, M. (2022). Direct photo-oxidation of methane to methanol over a mono-iron hydroxyl site. Nature Materials 2022 21:8, 21(8), 932–938. DOI: 10.1038/s41563-022-01279-1
  55. Beznis, N.V., Weckhuysen, B.M., Bitter, J.H. (2010). Cu-ZSM-5 zeolites for the formation of methanol from methane and oxygen: Probing the active sites and spectator species. Catalysis Letters, 138(1–2), 14–22. DOI: 10.1007/S10562-010-0380-6
  56. Pokhrel, J., Shantz, D.F. (2023). Continuous partial oxidation of methane to methanol over Cu-SSZ-39 catalysts. Journal of Catalysis, 421, 300–308. DOI: 10.1016/J.JCAT.2023.03.021
  57. Beznis, N.V., Weckhuysen, B.M., Bitter, J.H. (2010). Partial oxidation of methane over Co-ZSM-5: Tuning the oxygenate selectivity by altering the preparation route. Catalysis Letters, 136(1–2), 52–56. DOI: 10.1007/S10562-009-0206-6

Last update:

No citation recorded.

Last update:

No citation recorded.