skip to main content

Methylene Blue Degradation with Sulfonated SPG20 Silica-Fe₂O₃ Hybrid Photocatalysts

Chemistry Education Study Program, Faculty of Teacher Training and Education, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia

Received: 18 Apr 2025; Revised: 28 May 2025; Accepted: 1 Jun 2025; Available online: 4 Jun 2025; Published: 30 Oct 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

This study aims to synthesize and evaluate the photocatalytic performance of a modified mesoporous silica-based composite, Fe₂O₃/SPG₂₀–SO₃H, for methylene blue degradation. The catalyst was prepared via a soft-template method using P123 surfactant and gelatin as dual structure-directing agents. Characterization results confirmed the formation of Fe₂O₃ crystallites with a dominant size of 2.14 nm and crystallinity of 90.85%. FTIR spectra revealed the presence of –COOH, Si–O–Si, Si–OH, and –OH groups, while sulfonate-related bands (–SO₃H, O=S=O) were not observed in XRD patterns, suggesting amorphous or poorly crystalline sulfonic groups. SEM analysis indicated rod-like catalyst morphology. Photocatalytic testing under various temperatures showed that Fe₂O₃/SPG₂₀–SO₃H achieved the highest degradation efficiency at 70 °C, maintaining over 92.14 % efficiency for up to 120 minutes of contact time. Lower temperatures (5 °C and 15 °C) led to reduced and less stable degradation activity. These results indicate that both sulfonation and iron oxide impregnation, combined with optimal operating temperature, significantly enhance the photocatalytic performance of mesoporous silica systems, offering a cost-effective and environmentally friendly solution for dye-contaminated wastewater treatment. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Mesoporous silica; Sulfonation; Fe₂O₃; Impregnation; Methylene blue; Photocatalysis; Soft-template synthesis.
Funding: Universitas Sebelas Maret under contract 369/UN27.22/PT.01.03/2025

Article Metrics:

  1. Patwari, S.S., Elections, G. (2024). Texprocil. VII(1)
  2. Ardrarani, G., Rachmawati, L. (2023). Pengaruh Kualitas Produk, Harga dan Keputusan Pembelian Pakaian Bekas Thrifting. Journal of Economics, 3(2), 42–52. DOI: 10.26740/independent.v3n1.p42-52
  3. Lellis, B., Fávaro-Polonio, C.Z., Pamphile, J.A., Polonio, J.C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2), 275–290. DOI: 10.1016/j.biori.2019.09.001
  4. Islam, M., Rakha, A., Nawaj, J., Mondal, H. (2025). A critical review on textile dye-containing wastewater : Ecotoxicity , health risks , and remediation strategies for environmental safety. Cleaner Chemical Engineering, 11(January), 100165. DOI: 10.1016/j.clce.2025.100165
  5. Sarkar Phyllis, A.K., Tortora, G., Johnson, I. (2022). Photodegradation. Fairchild Books Dict Text. DOI: 10.5040/9781501365072.12105
  6. Chahal, M., Kumari, S., Bhattacharya, A., Garg, M.C. (2024). Evaluating sustainable agricultural waste biomass for methylene blue adsorption in wastewater treatment: A state-of-the-art review. Bioresource Technology Reports, 28(May), 101983. DOI: 10.1016/j.biteb.2024.101983
  7. Liu, Y., Chen, J., Duan, D., Zhang, Z., Liu, C., Cai, W., Zhao, Z. (2024). Environmental Impacts and Biological Technologies Toward Sustainable Treatment of Textile Dyeing Wastewater: A Review. Sustainability (Switzerland), 16(24) DOI: 10.3390/su162410867
  8. Bopape, D.A., Ntsendwana, B., Mabasa, F.D. (2024). Photocatalysis as a pre-discharge treatment to improve the effect of textile dyes on human health: A critical review. Heliyon, 10(20), e39316. DOI: 10.1016/j.heliyon.2024.e39316
  9. Obayomi, O.V., Olawoyin, D.C., Oguntimehin, O., Mustapha, L.S., Kolade, S.O., Oladoye, P.O., Oh, S., Obayomi, K.S. (2024). Exploring emerging water treatment technologies for the removal of microbial pathogens. Current Research in Biotechnology, 8(May). DOI: 10.1016/j.crbiot.2024.100252
  10. Kainth, S., Sharma, P., Pandey, O.P. (2024). Green sorbents from agricultural wastes: A review of sustainable adsorption materials. Applied Surface Science Advances, 19(September 2023), 100562. DOI: 10.1016/j.apsadv.2023.100562
  11. Oyewo, O.A., Muliwa, A.M., Makgato, S.S., Onwudiwe, D.C. (2025). Research progress on green adsorption process for water pollution control applications. Hybrid Advances, 8(September 2024), 100338. DOI: 10.1016/j.hybadv.2024.100338
  12. Oladoye, P.O., Kadhom, M., Khan, I., Hama Aziz, K.H., Alli, Y.A. (2024). Advancements in adsorption and photodegradation technologies for Rhodamine B dye wastewater treatment: fundamentals, applications, and future directions. Green Chemical Engineering, 5(4), 440–460. DOI: 10.1016/j.gce.2023.12.004
  13. Mohd Adnan, M.A., Bao, L.P., Muhd Julkapli, N. (2020). Mitigation of pollutants by chitosan/metallic oxide photocatalyst: A review. Journal of Cleaner Production, 261, 121190. DOI: 10.1016/j.jclepro.2020.121190
  14. Hakim, A.L., Sari, I.E., Nur Sabrina, B.J., Nurkhalizah, Z.A., Ajeng Zahabiya, E.K., Hidayat, A.N., Sulistiono, D.O., Sopiah, R.N., Kusumawati, Y., Ediati, R. (2025). Impregnation of porous TiO2/ZnO into MCM-41 synthesized from coal fly ash for enhanced photocatalytic activity of TiO2/ZnO@MCM-41 composites in methylene blue removal. Case Studies in Chemical and Environmental Engineering, 11(December 2024), 101152. DOI: 10.1016/j.cscee.2025.101152
  15. Ahmad Hariza, A.M., Mohd Yunus, M.H., Fauzi, M.B., Murthy, J.K., Tabata, Y., Hiraoka, Y. (2023). The Fabrication of Gelatin–Elastin–Nanocellulose Composite Bioscaffold as a Potential Acellular Skin Substitute. Polymers, 15(3). DOI: 10.3390/polym15030779
  16. Cheng, J., Gao, R., Zhu, Y., Lin, Q. (2024). Applications of biodegradable materials in food packaging: A review. Alexandria Engineering Journal, 91(January), 70–83. DOI: 10.1016/j.aej.2024.01.080
  17. Ulfa, M., Aziza, H., Sholeha, N.A. (2025). In-situ sulfonated mesoporous silica as ZnO nanomaterial support for enhanced dyes photodegradation. Results in Engineering, 26(February), 104381. DOI: 10.1016/j.rineng.2025.104381
  18. Xie, T., Zeng, C., Wang, C., Zhang, L. (2013). Preparation of methyl ester sulfonates based on sulfonation in a falling film microreactor from hydrogenated palm oil methyl esters with gaseous SO3. Industrial and Engineering Chemistry Research, 52(10), 3714–3722. DOI: 10.1021/ie3028763
  19. Qadariyah, L., Sahila, S., Mahfud, M. (2021). The effect of reaction time and temperature on the synthesis of methyl ester sulfonate surfactant from palm oil as a feedstock using microwave-assisted heating. ASEAN Journal of Chemical Engineering, 21(1), 104–112. DOI: 10.22146/ajche.63786
  20. Mandal, S., Adhikari, S., Pu, S., Wang, X., Kim, D.H., Patel, R.K. (2019). Interactive Fe2O3/porous SiO2 nanospheres for photocatalytic degradation of organic pollutants: Kinetic and mechanistic approach. Chemosphere, 234, 596–607. DOI: 10.1016/j.chemosphere.2019.06.092
  21. Abhishek B., Jayarama A., Rao, A.S., Nagarkar, S.S., Dutta, A., Duttagupta, S.P., Prabhu, S.S., Pinto, R. (2024). Challenges in photocatalytic hydrogen evolution: Importance of photocatalysts and photocatalytic reactors. International Journal of Hydrogen Energy, 81(July), 1442–1466. DOI: 10.1016/j.ijhydene.2024.07.262
  22. Ulfa, M., Nina, Pangestuti, I., Holilah, Bahruji, H., Rilda, Y., Alias, S.H., Nur, H. (2024). Enhancing photocatalytic activity of Fe2O3/TiO2 with gelatin: A fuzzy logic analysis of mesoporosity and iron loading. South African Journal of Chemical Engineering, 50(August), 245–260. DOI: 10.1016/j.sajce.2024.08.011
  23. Ulfa, M., Prasetyoko, D., Mahadi, A.H., Bahruji, H. (2020). Size tunable mesoporous carbon microspheres using Pluronic F127 and gelatin as co-template for removal of ibuprofen. Science of the Total Environment, 711, 135066. DOI: 10.1016/j.scitotenv.2019.135066
  24. Ulfa, M., Iswanti, Y., Irwanti, Y., Sholeha, N.A., Masruchin, N., Subagyo, R., Bahruji, H., Prasetyoko, D. (2023). Hydrothermal effect of gunningite use Pluronic F127-Gelatin as template and the ibuprofen adsorption performance. Heliyon, 9(3), e14473. DOI: 10.1016/j.heliyon.2023.e14473
  25. Liang, S., Zhang, J., Huang, S., Lan, X., Wang, W., Tang, Y. (2025). Functionalized Gelatin Electrospun Nanofibrous Membranes in Food Packaging: Modification Strategies for Fulfilling Evolving Functional Requirements. Polymers, 17(8), 1–32. DOI: 10.3390/polym17081066
  26. Komadel, P., Madejová, J. (2013). Acid activation of clay minerals, 2nd ed. Elsevier Ltd
  27. Zailan, Z., Tahir, M., Jusoh, M., Zakaria, Z.Y. (2021). A review of sulfonic group bearing porous carbon catalyst for biodiesel production. Renewable Energy, 175, 430–452. DOI: 10.1016/j.renene.2021.05.030
  28. Toy, M., Recepoğlu, Y.K., Arar, Ö. (2025). Sulfonated Cellulose: A Strategy for Effective Methylene Blue Sequestration. ACS Omega. 10(8), 8696–8708. DOI: 10.1021/acsomega.5c00179
  29. Munnik, P., De Jongh, P.E., De Jong, K.P. (2015). Recent Developments in the Synthesis of Supported Catalysts. Chemical Reviews, 115(14), 6687–6718. DOI: 10.1021/cr500486u
  30. Gong, X., Jadhav, N.D., Lonikar, V. V., Kulkarni, A.N., Zhang, H., Sankapal, B.R., Ren, J., Xu, B. Bin, Pathan, H.M., Ma, Y., Lin, Z., Witherspoon, E., Wang, Z., Guo, Z. (2024). An overview of green synthesized silver nanoparticles towards bioactive antibacterial, antimicrobial and antifungal applications. Advances in Colloid and Interface Science, 323(November 2023), 103053. DOI: 10.1016/j.cis.2023.103053
  31. Huang, S., Ma, P., Wei, Y., Cheng, Z., Liu, B., Deng, X., Xie, Z., Xing, B., Lin, J. (2020). Controllable synthesis of hollow porous silica nanotubes/CuS nanoplatform for targeted chemo-photothermal therapy. Science China Materials, 63(5), 864–875. DOI: 10.1007/s40843-019-1235-1
  32. Liu, L., Fu, S., Lv, X., Yue, L., Fan, L., Yu, H., Gao, X., Zhu, W., Zhang, W., Li, X., Zhu, W. (2020). A Gas Sensor With Fe2O3 Nanospheres Based on Trimethylamine Detection for the Rapid Assessment of Spoilage Degree in Fish. Frontiers in Bioengineering and Biotechnology, 8(September), 1–9. DOI: 10.3389/fbioe.2020.567584
  33. Mao, T., Zha, J., Hu, Y., Chen, Q., Zhang, J., Luo, X. (2024). Research Progress of TiO2 Modification and Photodegradation of Organic Pollutants. Inorganics, 12(7) DOI: 10.3390/inorganics12070178
  34. Islam, A., Malek, A., Islam, M.T., Nipa, F.Y., Raihan, O., Mahmud, H., Uddin, M.E., Ibrahim, M.L., Abdulkareem-Alsultan, G., Mondal, A.H., Hasan, M.M., Salman, M.S., Kubra, K.T., Hasan, M.N., Sheikh, M.C., Uchida, T., Rasee, A.I., Rehan, A.I., Awual, M.E., Hossain, M.S., Waliullah, R.M., Awual, M.R. (2025). Next frontier in photocatalytic hydrogen production through CdS heterojunctions. International Journal of Hydrogen Energy, 101(November 2024), 173–211. DOI: 10.1016/j.ijhydene.2024.12.300
  35. Zafar, Z., Yi, S., Li, J., Li, C., Zhu, Y., Zada, A., Yao, W., Liu, Z., Yue, X. (2022). Recent Development in Defects Engineered Photocatalysts: An Overview of the Experimental and Theoretical Strategies. Energy and Environmental Materials, 5(1), 68–114. DOI: 10.1002/eem2.12171
  36. Qi, Z., Xi, M., Liu, Z., Sheng, R., Wang, W., Wu, T., Huang, Y. (2024). Preferred crystal surface exposure and near-crystal surface desolvation construct efficient Zn plating/stripping reversibility. Chemical Engineering Journal, 499 (July), 156228. DOI: 10.1016/j.cej.2024.156228
  37. Sun, Z., Bai, C., Zheng, S., Yang, X., Frost, R.L. (2013). A comparative study of different porous amorphous silica minerals supported TiO2 catalysts. Applied Catalysis A: General, 458, 103–110. DOI: 10.1016/j.apcata.2013.03.035
  38. Tsaviv, J.N., Eneji, I.S., Shato’Ato, R., Ahemen, I., Jubu, P.R., Yusof, Y. (2024). Photodegradation, kinetics and non-linear error functions of methylene blue dye using SrZrO3 perovskite photocatalyst. Heliyon, 10(14). DOI: 10.1016/j.heliyon.2024.e34517
  39. Mills, A., Sheik, M., O’Rourke, C., McFarlane, M. (2009). Adsorption and photocatalysed destruction of cationic and anionic dyes on mesoporous titania films: Reactions at the air-solid interface. Applied Catalysis B: Environmental, 89(1–2), 189–195. DOI: 10.1016/j.apcatb.2008.11.029
  40. Li, X., Chen, Y., Tao, Y., Shen, L., Xu, Z., Bian, Z., Li, H. (2022). Challenges of photocatalysis and their coping strategies. ChemCatalysis, 2(6), 1315–1345. DOI: 10.1016/j.checat.2022.04.007
  41. Li, A., Zhang, P., Kan, E., Gong, J. (2024). Wettability adjustment to enhance mass transfer for heterogeneous electrocatalysis and photocatalysis. eScience, 4(1), 100157. DOI: 10.1016/j.esci.2023.100157
  42. Moein Najafabadi, S., Safaei Ghomi, J. (2023). Synthesis of COF-SO3H Immobilized on Manganese Ferrite Nanoparticles As An Efficient Nanocomposite in The Preparation of spirooxindoles. Scientific Reports, 13(1). DOI: 10.1038/s41598-023-49628-7
  43. Kumar, Y., Kumar, R., Raizada, P., Khan, A.A.P., Singh, A., Le, Q. Van, Nguyen, V.H., Selvasembian, R., Thakur, S., Singh, P. (2022). Current status of hematite (α-Fe2O3) based Z-scheme photocatalytic systems for environmental and energy applications. Journal of Environmental Chemical Engineering, 10(3), 107427. DOI: 10.1016/j.jece.2022.107427
  44. Dostanić, J., Lončarević, D., Hadnađev-Kostić, M., Vulić, T. (2024). Recent Advances in the Strategies for Developing and Modifying Photocatalytic Materials for Wastewater Treatment. Processes, 12(9), 1914. DOI: 10.3390/pr12091914
  45. Hillman, S.A.J., Sprick, R.S., Pearce, D., Woods, D.J., Sit, W.Y., Shi, X., Cooper, A.I., Durrant, J.R., Nelson, J. (2022). Why Do Sulfone-Containing Polymer Photocatalysts Work so Well for Sacrificial Hydrogen Evolution from Water? Journal of the American Chemical Society, 144(42), 19382–19395. DOI: 10.1021/jacs.2c07103
  46. Li, J., Li, H., Yuan, Z., Fang, J., Chang, L., Zhang, H., Li, C. (2019). Role of sulfonation in lignin-based material for adsorption removal of cationic dyes. International Journal of Biological Macromolecules, 135, 1171–1181. DOI: 10.1016/j.ijbiomac.2019.06.024
  47. Lee, D.E., Kim, M.K., Danish, M., Jo, W.K. (2023). State-of-the-art review on photocatalysis for efficient wastewater treatment: Attractive approach in photocatalyst design and parameters affecting the photocatalytic degradation. Catalysis Communications, 183 (August), 106764. DOI: 10.1016/j.catcom.2023.106764
  48. Chen, C., Zhao, C., Zhou, X., Chen, J., Chen, L., Li, F. (2021). DFT study on the interaction of H2O and O2 with α-Fe2O3 (001) surface. Vacuum, 188. 110-164. DOI: 10.1016/j.vacuum.2021.110164
  49. Li, J., Miao, X., Han, B., Wang, K., An, B., Xu, G., Ju, D., Li, Y., Yu, H., Zhou, W. (2024). Sulphonated coal tar pitch as a carbon source to develop the storage capacity of Fe2O3@C materials. Catalysis Today, 439(189), 114822. DOI: 10.1016/j.cattod.2024.114822
  50. Abu-Saied, M.A., Abualnaja, K.M., Eman A, El-Desouky Gamal, A.-N., E.A. Eldeeb, Elerian, A.F. (2024). Sulphonated poly (Glycidyl Methacrylate-co-Styrene)-based adsorbents for the removal of Methylene Blue (MB) dye from aqueous solutions. Desalination and Water Treatment, 320 (3), 23-33. DOI: 10.1016/j.dwt.2024.100759
  51. Ramajeya, C., Balasubramanian, K. (2025). L-isoleucine doped Creatininium Benzene Sulphonate organic single crystals: Insight into charge carrier dynamics and sensor applications. Results in Engineering, 26(March), 104815. DOI: 10.1016/j.rineng.2025.104815
  52. Wang, Y., Fang, Z., Zhang, F. (2019). Esteri fi cation of oleic acid to biodiesel catalyzed by a highly acidic carbonaceous catalyst. Catalysis Today, 319(May 2018), 172–181. DOI: 10.1016/j.cattod.2018.06.041
  53. Wolski, L., Sobańska, K., Walkowiak, A., Akhmetova, K., Gryboś, J., Frankowski, M., Ziolek, M., Pietrzyk, P. (2021). Enhanced adsorption and degradation of methylene blue over mixed niobium-cerium oxide – unraveling the synergy between Nb and Ce in advanced oxidation processes. Journal of Hazardous Materials, 415(March), 125665. DOI: 10.1016/j.jhazmat.2021.125665
  54. Ulfa, M., Al Afif, H., Saraswati, T.E., Bahruji, H. (2022). Fast Removal of Methylene Blue via Adsorption-Photodegradation on TiO2/SBA-15 Synthesized by Slow Calcination. Materials, 15(5471), 1–13. DOI: 10.3390/ma15165471
  55. Kanakaraju, D., bin Ya, M.H., Lim, Y.C., Pace, A. (2020). Combined Adsorption/Photocatalytic dye removal by copper-titania-fly ash composite. Surfaces and Interfaces, 19(January), 100534. DOI: 10.1016/j.surfin.2020.100534
  56. Murphy, S., Saurel, C., Morrissey, A., Tobin, J., Oelgemöller, M., Nolan, K. (2012). Photocatalytic activity of a porphyrin/TiO2 composite in the degradation of pharmaceuticals. Applied Catalysis B: Environmental, 119–120, 156–165. DOI: 10.1016/j.apcatb.2012.02.027

Last update:

No citation recorded.

Last update:

No citation recorded.