skip to main content

Eco-Friendly Photocatalyst from Limestone: ZnO-Hydroxyapatite Composite for Efficient Rhodamine B Removal

1Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha, Jl. Udayana Singaraja, Bali 81117, Indonesia

2Doctoral Program of Environmental Science, Udayana University, Jl. PB. Sudirman Denpasar-Bali, Indonesia

3Department of Chemistry, Faculty of Mathematics and Natural Sciences, Udayana University, Jimbaran, Badung, Bali 80361, Indonesia

4 Animal Husbandry Department, Faculty of Animal Husbandry, Udayana University, Jimbaran, Badung, Bali 80361, Indonesia

View all affiliations
Received: 15 Jun 2025; Revised: 20 Jul 2025; Accepted: 22 Jul 2025; Available online: 25 Jul 2025; Published: 30 Oct 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

This study aims to synthesize and characterize a limestone-based ZnO-hydroxyapatite (HA/ZnO) composite and evaluate its performance in the photocatalytic degradation of Rhodamine B under UV irradiation. Hydroxyapatite was synthesized by reacting calcined CaO from limestone with orthophosphoric acid and subsequently combined with ZnO via a co-precipitation–hydrothermal method. The materials were characterized using X-ray Diffraction (XRD) and Fourier Transform Infra Red (FTIR) to determine their crystal structure and functional groups. The HA/ZnO composite exhibited the smallest crystallite size (14.86 nm), indicating enhanced surface area and strong interfacial interaction. Photodegradation tests revealed optimal conditions at pH of 9, Rhodamine B concentration of 20 mg/L, and catalyst dosage of 1.5 g, achieving a maximum degradation efficiency of 99.81%. Toxicity assessment using a corn seed germination test showed a significant increase in germination rate from 16% (untreated) to 92% (after photocatalytic treatment). These findings suggest that the limestone-derived HA/ZnO composite is a promising, environmentally friendly, and efficient photocatalyst for textile dye wastewater treatment. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Photodegradation; ZnO-hydroxyapatite; limestone; Rhodamine B; photocatalyst

Article Metrics:

  1. Sukarta, I.N., Ayuni, N.P.S., Sastrawidana, I. D.K. (2021). Utilization of Khamir ( Saccharomyces cerevisiae ) as Adsorbent of Remazol Red RB Textile Dyes. Ecological Engineering & Environmental Technology, 22(1), 117–123. DOI: 10.12912/27197050/132087
  2. Sudiana, I.K., Sastrawidana, I.D.K., Sukarta, I.N. (2022). Adsorption Kinetic and Isotherm Studies of Reactive Red B Textile Dye Removal Using Activated Coconut Leaf Stalk. Ecological Engineering & Environmental Technology, 23(5), 61–71. DOI: 10.12912/27197050/151628
  3. Tan, L.S., Jain, K., Rozaini, C.. (2010). Adsorption of Textile Dye from Aqueous Solution on Pretreated Mangrove Bark, An Agricultural Waste: Equilibrium and Kinetic Studies. Journal of Applied Sciences in Environmental Sanitation, 5(3)
  4. Tao, P., Xu, Y., Song, C., Yin, Y., Yang, Z., Wen, S. (2017). A novel strategy for the removal of rhodamine B ( RhB ) dye from wastewater by coal-based carbon membranes coupled with the electric. Separation and Purification Technology, 179, 1–23. DOI: 10.1016/j.seppur.2017.02.014
  5. Hamdaoui, O. (2011). Intensification of the sorption of Rhodamine B from aqueous phase by loquat seeds using ultrasound. Desalination 271(1–3), 279–286. DOI: 10.1016/j.desal.2010.12.043
  6. Carabin, A., Drogui, P., Robert, D. (2015). Photo-degradation of carbamazepine using TiO2 suspended photocatalysts. Journal of the Taiwan Institute of Chemical Engineers, 54, 109–117. DOI: 10.1016/j.jtice.2015.03.006
  7. Ibhadon, A.O., Fitzpatrick, P. (2013). Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts, 3, 189–218. DOI: 10.3390/catal3010189
  8. Rafiq, A., Ikram, M., Ali, S., Niaz, F., Khan, M., Khan, Q., Maqbool, M. (2021). Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. Journal of Industrial and Engineering Chemistry. 97, 111–128. DOI: 10.1016/j.jiec.2021.02.017
  9. Lal, M., Sharma, P., Singh, L. Ram, C. (2023). Photocatalytic degradation of hazardous Rhodamine B dye using sol-gel mediated ultrasonic hydrothermal synthesized of ZnO nanoparticles. Results in Engineering. 17, 1-13. DOI: 10.1016/j.rineng.2023.100890
  10. Adeel, M., Saeed, M., Khan, I., Muneer, M., Akram, N. (2021). Synthesis and characterization of Co − ZnO and evaluation of its photocatalytic activity for photodegradation of Methyl Orange. ACS Omega, 6, 1426−1435. DOI: 10.1021/acsomega.0c05092
  11. H. Almohamadi, H., Awad, S.A., Sharma, A.K., Fayzullaev, N., Távara-Aponte, A., Chiguala-Contreras, L., Amari, A., Rodriguez-Benites, C., Tahoon, M.A., Esmaeili, H. (2024). Photocatalytic activity of metal- and non-metal-anchored ZnO and TiO2 nanocatalysts for advanced photocatalysis: comparative study. Cataysts, 14(424), 1-35. DOI: 10.3390/catal14070420
  12. Lee, H.J., Kim, J.H., Park, S.S., Hong, S.S., Lee, G.D. (2014). Degradation kinetics for photocatalytic reaction of methyl orange over Al-doped ZnO nanoparticles. Journal of Industrial and Engineering Chemistry, 25, 1–8, DOI: 10.1016/j.jiec.2014.10.035
  13. El Bekkali, C., Labrag, J., Oulguidoum, A., Chamkhi, I., Laghzizil, A., Nunzi, J.M., Robert, D., Aurag, J. (2022). Porous ZnO / hydroxyapatite nanomaterials with effective photocatalytic and antibacterial activities for the degradation of antibiotics. Nanotechnology for Environmental Engineering, 7(2), 333–341, DOI: 10.1007/s41204-021-00172-7
  14. Binetruy, C., Michaud, V. (2021). Emerging , hybrid & smart composites. Functional Composite Materials, 2(16), 1-2, DOI: 10.1186/s42252-021-00028-y
  15. Atemni,I., Ouafi, R., Hjouji, K., Mehdaoui, I., Ainane, A., Ainane, T. (2023). Extraction and characterization of natural hydroxyapatite derived from animal bones using the thermal treatment process. Emergent Mater., 6(2), 551-560, DOI: 10.1007/s42247-022-00444-1
  16. Apostoluk, A., Zhu, Y., Gautier, P., Valette, A., Bluet, J.M., Cornier, T., Masenelli, B., Daniele, S. (2023). Improved visible emission from ZnO nanoparticles synthesized via the Co-precipitation method. Materials, 16(15), 5400, DOI: 10.3390/ma16155400
  17. Malau, N.D. (2021). The effect of calcination time variation on CaO synthesa from limestone. International Journal of Progressive Sciences and Technologies (IJPSAT), 25(2), 684–689. DOI: 10.52155/ijpsat.v25.2.2946
  18. Khan, S., Malik, A. (2018). Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye. Environmental Science and Pollution Research, 25, 4446–4458, DOI: 10.1007/s11356-017-0783-7
  19. Ai, Z., Na, W., Li, J., Huang, Z., Huang, H., Peng, Y., Gao, W., Wang, H. (2024). Enhanced low‑temperature CO2 hydrogenation to methane over Co‑Zn oxides catalysts. Catalysis Letters, 154 (9) 5255–5269, DOI: 10.1007/s10562-024-04700-3
  20. Abdelhakim, H. K., El-Sayed, E.R., Rashidi, F.B. (2020). Biosynthesis of zinc oxide nanoparticles with antimicrobial , anticancer , antioxidant and photocatalytic activities by the endophytic Alternaria tenuissima. Journal of Applied Microbiology, 128, 1634-1646, DOI: 10.1111/jam.14581
  21. Lahure, P., Salunke, P., Soliwal, R., Yadav, A., Tripathi, S., Koser, A.A. (2015). X-Ray diffraction study of ZnO nanoparticles. International Journal of Scientific Research in Physics and Applied Sciences, 3(1), 32–33
  22. Rafique, M.M.A. (2018) Hydrothermal processing of phase pure and doped hydroxyapatite and its characterization. Journal of Encapsulation and Adsorption Sciences, 8, 18–37, DOI: 10.4236/jeas.2018.81002
  23. Sharma, J., Vashishtha, M., Shah, D.O. (2014). Crystallite size dependence on structural. Global Journal of Science Frontier Research: B Chemistry, 14(5), 19-32
  24. Zhou, W., Sun, L., Li, K., Tian, S. (2024). Enhanced photocatalytic activity of V2C MXene-Coupled ZnO porous nanosheets with increased surface area and effective. Materials, 17(11), 2529, DOI: 10.3390/ma17112529
  25. Sarkar, D., Pramanik, J., Samajdar, S. (2025). Applied interfaces charge carrier dynamics in semiconductor – cocatalyst interfaces : influence on photocatalytic activities. RSC Applied Interfaces, 2(3), 573–598, 2025, DOI: 10.1039/d5lf00044k
  26. Tanji, K., Navio, J.A., Martín-Gómez, A.N., Hidalgo, M.C., Jaramillo-Páez, C., Naja, J., Hassoune, H., Kherbeche, A. (2020). Role of Fe ( III ) in aqueous solution or deposited on ZnO surface in the photoassisted degradation of Rhodamine. Chemosphere, 241, 125009, DOI: 10.1016/j.chemosphere.2019.125009
  27. Jayarambabu, N., Kumari, B.S. (2015). Beneficial role of zinc oxide nanoparticles on green crop production. International Journal of Multidisciplinary Advanced Research Trends, 2(1), 275-282
  28. Kulkarni, S.S. (2015). Optical and structural properties of zinc oxide nanoparticles. International Journal of Advanced Research in Physical Science (IJARPS), 2(1), 14–18
  29. Cahyaningrum, S.E., Herdyastuty, N., Devina, B., Supangat, D. (2018). synthesis and characterization of hydroxyapatite powder by wet precipitation method synthesis and characterization of hydroxyapatite powder by wet precipitation method. IOP Conference Series: Materials Science and Engineering, 1–5. DOI: 10.1088/1757-899X/299/1/012039
  30. Hossain, M.S., Ahmed, S. (2023). FTIR spectrum analysis to predict the crystalline and amorphous phases of hydroxyapatite : a comparison of vibrational motion to reflection. The Royal Society of Chemistry, 13, 14625-14630, DOI: 10.1039/d3ra02580b
  31. Pettersson, P., Barth, A. (2020). Correlations between the structure and the vibrational spectrum of the phosphate group. Implications for the analysis of an important functional group in phosphoproteins. The Royal Society of Chemistry, 10(4715), 4715–4724, DOI: 10.1039/c9ra10366j
  32. Andrushchenko, V., Benda, L., Bour, P. (2015). Vibrational properties of the phosphate group investigated by molecular dynamics and density functional theory. The Journal of Physical Chemistry, 119, 10682–10692, DOI: 10.1021/acs.jpcb.5b05124
  33. Rosa, A.L., Faris, L.R., Dias, V.P., Pacheco, O.B., Marisso, F.D.P., Rodigues Junior, L.F., Sagrillo, M.R., Rossato, A., Santos, L.L. (2022). Effect of synthesis temperature on crystallinity, morphology and cell viability of nanostructured hydroxyapatite via wet chemical precipitation method. International Journal of Advances in Medical Biotechnology, 4(2), 29–33, DOI: 10.52466/ijamb.v5i1.110
  34. Maggi, L., Friuli, V., Cerea, B., Bruni, G., Berbenni, V., Bini, M. (2024). Physicochemical characterization of hydroxyapatite hybrids with meloxicam for dissolution rate improvement. Molecules, 29(2419), 1–18, DOI: 10.3390/molecules29112419
  35. Babu, K. S., Reddy, A. R., Sujatha, C., Reddy, K.V., Mallika, A.N. (2013). Synthesis and optical characterization of porous ZnO. Journal of Advanced Ceramics, 2(3), 260–265, DOI: 10.1007/s40145-013-0069-6
  36. Chaudhari, A.A., Tupe, U.J., Patil, A.V., Dighavkar, C.G. (2022). Synthesis and characterization of zinc oxide nanoparticles using green synthesis method. International Journal of Creative Research Thoughts (IJCRT), 10(2), 302–309
  37. Kazeminezhad, I., Sadollahkhani, A. (2016). Influence of pH on the photocatalytic activity of ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 27(25), 4206–4215, DOI: 10.1007/s10854-016-4284-0
  38. Kuśmierek, K., Fronczyk, J. (2023). Adsorptive removal of Rhodamine B Dye from aqueous solutions using mineral materials as low‑cost adsorbents. Water Air Soil. Pollut., 234(531), 1–14, DOI: 10.1007/s11270-023-06511-5
  39. Chen, Y., Ma, D., He, G., Pan, S. (2024). Effects of pH on the photocatalytic activity and degradation mechanism of Rhodamine B over Fusiform Bi photocatalysts under visible light. Water, 16(17), 2389, DOI: 10.3390/w16172389
  40. Jeevarathinam, M., Asharani, I. V. (2024). Synthesis of CuO, ZnO nanoparticles, and CuO‑ZnO nanocomposite for enhanced photocatalytic degradation of Rhodamine B : a comparative study. Scientific Reports, 14, 9718, DOI: 10.1038/s41598-024-60008-7
  41. Muhammad, A.S., Hudu, A. (2022). Photocatalytic degradation of rhodamine B dye using Mn doped ZnO nanoparticles Photocatalytic degradation of rhodamine B dye using Mn doped ZnO nanoparticles. Applied Journal of Environmental Engineering Science, 8 (4), 273–285. DOI: 10.48422/IMIST.PRSM/ajees-v8i4.34946
  42. Reza, K.M., Kurny, A., Gulshan,F. (2017). Parameters affecting the photocatalytic degradation of dyes using TiO2 : a review. Applied Water Science, 7(4), 1569–1578, DOI: 10.1007/s13201-015-0367-y
  43. Haleem, A., Ullah, M., Rehman, S., Shah, A., Farooq, M., Saeed, T., Ullah, I., Li, H. (2024). In-Depth photocatalytic degradation mechanism of the extensively used dyes Malachite Green, Methylene Blue, Congo Red, and Rhodamine B via covalent organic framework-based photocatalysts. Water, 16, 1588, DOI: 10.3390/w16111588
  44. Zango, Z.U., Dennis, J.O., Aljameel, A.I., Usman, F., Ali, M.K.M., Abdulkadir, B.A., Algessair, S., Aldaghri, O.A., Ibnaouf, K.H. (2022). Effective removal of methylene blue from simulated wastewater using ZnO-Chitosan nanocomposites: optimization, kinetics, and isotherm studies. Molecules, 27, 4746, DOI: 10.3390/molecules27154746
  45. Zhu, Z., Guo, F., Xu, Z., Di, X., Zhang, Q. (2020) Photocatalytic degradation of an organophosphorus pesticide using a ZnO/rGO composite. The Royal Society of Chemistry, 10, 11929–11938, DOI: 10.1039/d0ra01741h
  46. Tang, R., Sun, K., Liu, F., Lu, S., Chen, H., Chen, J. (2024). Efficient visible‑light driven photocatalytic Cr(VI) reduction on S and O co‑doped g‑C3N4 prepared from 2,5‑thiophene dicarboxylic acid based macromolecular precursor. Research on Chemical Intermediates, 50(2), 973–988, DOI: 10.1007/s11164-023-05187-0
  47. Ren, X., Du, Y., Qu, X., Li, Y., Yin, L., Shen, K., Zhang, J., Liu, Y. (2023). Controllable synthesis of ZnO nanoparticles with improved photocatalytic performance for the degradation of Rhodamine B under ultraviolet light irradiation. Molecules, 28, 5135, DOI: 10.3390/molecules28135135
  48. Ahouari, H., Samraoui, Z., Soualah, A., Tayeb, K.B. (2024). Photodegradation of Rhodamine B in aqueous solution using TiO2 polymorphs : EPR spectroscopy investigation. Water Air Soil. Pollut., 235(25), 1–16, DOI: 10.1007/s11270-023-06822-7
  49. Obayomi, K.S., Lau, S.Y., Xie, Z., Gray, S.R., Zhang, J. (2024). In-situ hydrothermal fabrication of ZnO-loaded GAC nanocomposite for efficient Rhodamine B Dye removal via synergistic photocatalytic and adsorptive performance. Nanomaterial, 14, 1234, DOI: 10.3390/nano14141234

Last update:

No citation recorded.

Last update:

No citation recorded.