skip to main content

Enhanced Photocatalytic Performance of Ag-Modified ZnO for the Degradation of Tartrazine Dye

School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Hanoi, Viet Nam

Received: 14 Jul 2025; Revised: 27 Aug 2025; Accepted: 28 Aug 2025; Available online: 3 Sep 2025; Published: 31 Oct 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

In this study, ZnO materials were synthesized using the hydrothermal method, and then modified with Ag using glucose, a biologically derived and environmentally friendly reducing agent, to produce Ag/ZnO materials with varying Ag contents. The obtained material samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence spectroscopy (PL) to determine the crystal structure, surface morphology, and optical properties, respectively. The results showed that the Ag/ZnO sample containing 5 % Ag (Ag/ZnO-5 %) was able to completely decompose Tartrazine (TA) dye after 80 min of irradiation with an 85 W UV lamp, with a first-order reaction rate constant k = 0.03789 min-1 and degradation capacity of 20 mg/g. In comparison, pure ZnO achieved an efficiency of less than 60 %. Factors affecting the photodegradation efficiency, such as initial TA concentration, catalyst dosage, and pH of the solution, were investigated to optimize the reaction conditions. In addition, the Ag/ZnO material exhibited high degradation efficiency toward various organic pollutants, such as Janus Green B (JGB), Congo red (C-Red), Methylene blue (MB), and Caffeine, indicating its potential for broad applications in wastewater treatment. Notably, the investigation of different irradiation light sources (UV, visible light, and sunlight) revealed that sunlight could promote complete degradation of TA in only 20 min of exposure. The photocatalytic reaction mechanism was also proposed to clarify the role of Ag as well as ZnO in enhancing the performance of the Ag/ZnO material system. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Tartrazine; ZnO; Ag; Photocatalysis; SPR
Funding: Vingroup Innovation Foundation (VINIF) under contract VINIF.2024.ThS.21

Article Metrics:

  1. Micheletti, D.H., da Silva Andrade, J.G., Porto, C.E., Alves, B.H.M., de Carvalho, F.R., Sakai, O.A., Batistela, V.R. (2023). A review of adsorbents for removal of yellow tartrazine dye from water and wastewater. Bioresource Technology Reports, 24, 101598. DOI: 10.1016/j.biteb.2023.101598
  2. Gupta, V.K., Jain, R., Nayak, A., Agarwal, S., Shrivastava, M. (2011). Removal of the hazardous dye—Tartrazine by photodegradation on titanium dioxide surface. Materials Science and Engineering: C, 31(5), 1062-1067. DOI: 10.1016/j.msec.2011.03.006
  3. Wouters, R.D., Muraro, P.C.L., Druzian, D.M., Viana, A.R., de Oliveira Pinto, E., da Silva, J.K. L., da Silva, J.K.L., Vizzotto, B.S., Ruiz, Y.P.M., Galembeck, A., Pavoski, G., Espinosa, D.C.R., da Silva, W. L. (2023). Zinc oxide nanoparticles: Biosynthesis, characterization, biological activity and photocatalytic degradation for tartrazine yellow dye. Journal of Molecular Liquids, 371, 121090. DOI: 10.1016/j.molliq.2022.121090
  4. Kaneva, N., Bachvarova-Nedelcheva, A. (2024). The Effect of Heat Treatment on the Sol–Gel Preparation of TiO2/ZnO Catalysts and Their Testing in the Photodegradation of Tartrazine. Applied Sciences, 14 (21). DOI: 10.3390/app14219872
  5. Dao Thi, C.V., Nguyen, T.A., Nguyen Thi, T.A., Vu, A.T. (2025). Synthesis of g-C₃N₄-based nanocomposites with low Au loading for efficient methylene blue degradation. Nanotechnology. 36 (25), 255703. DOI: 10.1088/1361-6528/ade0c5
  6. Nguyen, T.T.A., Dao, T.C.V., Vu, A.-T. (2024). Controlling the physical properties of Ag/ZnO/g-C3N4 nanocomposite by the calcination procedure for enhancing the photocatalytic efficiency. Ceramics International, 50(9), 14292-14306. DOI: 10.1016/j.ceramint.2024.01.336
  7. Nguyen, T.H., Mai, T.T., Tran, T.P., Thi, C.L.T., Thi, C.V.D., Thi, M.L.V., Nguyen, T.M., Luong, N.S., Le, V.D., Nguyen, M.V., Nguyen, T.H., Vu, A.-T. (2024). Studying the nanocomposite B/ZnO for photocatalysis: facile control the morphology via sol-gel method and antibiotic degradation investigations. Journal of Sol-Gel Science and Technology, 110(2), 319-332. DOI: 10.1007/s10971-024-06359-z
  8. Vu, A. (2020). Synthesis of ZnO, g-C3N4 and ZnO/g-C3N4 composite and their photocatalytic activity under vilsible light irradiation. Vietnam Journal of Catalysis and Adsorption, 9(2), 87-93. DOI: 10.51316/jca.2020.034
  9. Nguyen, T.H., Vu, A.-T. (2024). Investigation of enhanced degradation of the antibiotic under visible in novel B/ZnO/TiO2 nanocomposite and its electrical energy consumption. Nanotechnology, 35(1), 015709. DOI: 10.1088/1361-6528/acffce
  10. Pham, T.A.T., Tran, V.A., Le, V.D., Nguyen, M.V., Truong, D.D., Do, X.T., Vu, A.-T. (2020). Facile preparation of ZnO nanoparticles and Ag/ZnO nanocomposite and their photocatalytic activities under visible light. International Journal of Photoenergy, 2020(1), 8897667. DOI: 10.1155/2020/8897667
  11. Whang, T.-J., Hsieh, M.-T., Chen, H.-H. (2012). Visible-light photocatalytic degradation of methylene blue with laser-induced Ag/ZnO nanoparticles. Applied Surface Science, 258(7), 2796-2801. DOI: 10.1016/j.apsusc.2011.10.134
  12. Vu, A.-T., Nguyen Thi Tu, A., Dao Thi Cam, V. (2025). A Novel Ag/ZnO/g-C3N4 (A/ZCN) Nanocomposite for photocatalytic treatment of organic dyes in aqueous solution. Environmental Engineering Science, 42(5), 189-202. DOI: 10.1089/ees.2024.0346
  13. Tuấn, V.A., Minh, P.Q., Anh, N.T.T., Vi, Đ.T.C., Hằng, N.T.B., Hương, N.T. (2024). Tổng Hợp Vật Liệu Ag/ZnO/g-C3N4 Bằng Phương Pháp Nung Đơn Giản Để Loại Bỏ Kháng Sinh Tetracycline Hydrochloride Trong Môi Trường Nước. Journal of Control Vaccines and Biologicals, 4(1). DOI: 10.56086/jcvb.v4i1.142
  14. Natsume, Y., Sakata, H., Hirayama, T. (1995). Low‐temperature electrical conductivity and optical absorption edge of ZnO films prepared by chemical vapour deposition. Physica Status Solidi (A), 148(2), 485-495. DOI: 10.1002/pssa.2211480217
  15. Wu, C., Shen, L., Zhang, Y.C., Huang, Q. (2012). Synthesis of AgBr/ZnO nanocomposite with visible light-driven photocatalytic activity. Materials Letters, 66(1), 83-85. DOI: 10.1016/j.matlet.2011.08.030
  16. Alenezi, M.R., Henley, S.J., Emerson, N.G., Silva, S.R.P. (2014). From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties. Nanoscale, 6(1), 235-247. DOI: 10.1039/C3NR04519F
  17. Dao Thi, C.V., Nguyen, T.A., Nguyen Thi, T.A., Vu, A.-T. (2025). Synthesis of g-C3N4-based nanocomposites with low Au loading for efficient methylene blue degradation. Nanotechnology, 36(25), 255703. DOI: 10.1088/1361-6528/ade0c5
  18. Bodannes, R. S., & Chan, P. C. (1979). Ascorbic acid as a scavenger of singlet oxygen. FEBS Lett., 105(2), 195-196. DOI: 10.1016/0014-5793(79)80609-2
  19. Ding, L., Hou, Y., Liu, H., Peng, J., Cao, Z., Zhang, Y., Wang, B., Cao, X., Chang, Y., Wang, T., Liu, G., Wang, T. (2023). Alcohols as scavengers for hydroxyl radicals in photocatalytic systems: reliable or not? ACS ES&T Water, 3(11), 3534-3543. DOI: 10.1021/acsestwater.3c00271
  20. Labaran, B., Vohra, M. (2014). Photocatalytic removal of selenite and selenate species: effect of EDTA and other process variables. Environmental Technology, 35(9), 1091-1100. DOI: 10.1080/09593330.2013.861857
  21. Samsudin, M.F.R., Siang, L.T., Sufian, S., Bashiri, R., Mohamed, N.M., Ramli, R.M. (2018). Exploring the role of electron-hole scavengers on optimizing the photocatalytic performance of BiVO4. Materials Today: Proceedings, 5(10), 21703-21709. DOI: 10.1016/j.matpr.2018.07.022
  22. dos Santos, T.C., Zocolo, G.J., Morales, D.A., Umbuzeiro, G.d.A., Zanoni, M.V.B. (2014). Assessment of the breakdown products of solar/UV induced photolytic degradation of food dye tartrazine. Food and Chemical Toxicology, 68, 307-315. DOI: 10.1016/j.fct.2014.03.025
  23. Ali, S.R., Kumar, R., Kadabinakatti, S.K., Arya, M.C. (2018). Enhanced UV and visible light—driven photocatalytic degradation of tartrazine by nickel-doped cerium oxide nanoparticles. Materials Research Express, 6(2), 025513. DOI: 10.1088/2053-1591/aaee44
  24. Vaiano, V., Iervolino, G., Sannino, D. (2016). Photocatalytic removal of tartrazine dye from aqueous samples on LaFeO3/ZnO photocatalysts. Chemical Engineering Transactions, 52, 847-852. DOI: 10.3303/CET1652142
  25. Quang, L.V., Vu, A.-T. (2023). Preparation of Au/ZnO/Fe3O4 composite for degradation of tartrazine under visible light. Bulletin of Chemical Reaction Engineering & Catalysis, 18(1), 71-84. DOI: 10.9767/bcrec.17061
  26. Ratshiedana, R., Fakayode, O.J., Mishra, A.K., Kuvarega, A.T. (2021). Visible-light photocatalytic degradation of tartrazine using hydrothermal synthesized Ag-doped TiO2 nanoparticles. Journal of Water Process Engineering, 44, 102372. DOI: 10.1016/j.jwpe.2021.102372
  27. Bouarroudj, T., Aoudjit, L., Djahida, L., Zaidi, B., Ouraghi, M., Zioui, D., Mahidine, S., Shekhar, C., Bachari, K. (2021). Photodegradation of tartrazine dye favored by natural sunlight on pure and (Ce, Ag) co-doped ZnO catalysts. Water Science and Technology, 83(9), 2118-2134. DOI: 10.2166/wst.2021.106

Last update:

No citation recorded.

Last update:

No citation recorded.