skip to main content

One-step Hydrothermal Synthesis of Fe3O4/GO Composites Combined with Persulfate for the Removal of Reactive Black in Aqueous Solution

1Liaoning Key Laboratory of Chemical Additive Synthesis and Separation Project, Yingkou Institute of Technology, Yingkou 115014, China

2Key Laboratory of Pollution Ecology and Environmental Engineering, Shenyang Institute of Applied Ecology, China Academy of Sciences, Shenyang 110016, China

3University of Chinese Academy of Sciences, Beijing 10049, China

Received: 14 Feb 2025; Revised: 7 May 2025; Accepted: 8 May 2025; Available online: 14 May 2025; Published: 30 Oct 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

An environmentally friendly magnetic Fe3O4/graphene oxide (Fe-GO) composite was synthesized via a hydrothermal method for persulfate (PDS) activation. The composite was systematically characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) analysis. Furthermore, the degradation performance of reactive black 5 (RB5) in the composite/PDS system was investigated under varying conditions, including composite dosage, PDS concentration, initial RB5 concentration, solution pH, and oscillation frequency. The experiments showed that the RB5 removal efficiency could reach 99.2% with good reproducibility under the conditions of 0.8 g/L of composites, 3 mol/L of PDS, 200 r/min of stirring speed, pH = 6, and 25℃ for 180 min. Quenching experiments showed that four active reactive substances, sulfate radicals SO4-·), hydroxyl radicals (·OH), oxygen radicals (O2·) and single linear oxygen (1O2), existed in the composite/PDS system, of which 1O2 played a crucial role in the degradation of RB5. Cycling tests showed that the Fe-GO composites were stable and had good application prospects. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Fe3O4; Graphene; graphene oxide; Persulfate; Hydrothermal Method; Dyes
Funding: Liaoning Key Laboratory of Chemical Additive Synthesis and Separation Project under contract ZJNK2014, ZJNK2420

Article Metrics:

  1. Alves de Lima, R.O., Bazo, A.P. (2007) Favero Salvadori D M, et al. Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 626 (1-2), 53-60. DOI: 10.1016/j.mrgentox.2006.08.002
  2. Khan, S., Malik, A. (2018) Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye. Environ. Sci. Pollut. R., 25(5), 4446-4458. DOI: 10.1007/s11356-017-0783-7
  3. Lu, J., Zhou, Y., Lei, J., Ao, Z., Zhou. Y. (2020) Fe3O4/graphene aerogels: A stable and efficient persulfate activator for the rapid degradation of malachite green. Chemosphere, 251, 126402-126413. DOI: 10.1016/j.chemosphere.2020.126402
  4. Zhou, Y., Lu, J., Zhou, Y., Liu, Y. (2019) Recent advances for dyes removal using novel adsorbents: A review. Environmental Pollution, 252, 352-365. DOI: 10.1016/j.envpol.2019.05.072
  5. Ghaffar, A., Mehdi, M., Otho, A.A., Tagar, U., Hakro, R.A., Hussain, S. (2023) Electrospun silk nanofibers for numerous adsorption-desorption cycles on Reactive Black 5 and reuse dye for textile coloration. Journal of Environmental Chemical Engineering, 11(6), 111188-111197. DOI: 10.1016/j.jece.2023.111188
  6. Vinayak, A., Singh, G.B. (2022) Biodecolorization of reactive black 5 using magnetite nanoparticles coated Bacillus sp. RA5. Materials Today: Proceedings, 48, 1523-1526. DOI: 10.1016/j.matpr.2021.09.425
  7. Cao, Y., Liu, W., Qian, J., Cao, T., Wang, J., Qin, W. (2019) Porous Organic Polymers Containing a Sulfur Skeleton for Visible Light Degradation of Organic Dyes. Chemistry-an Asian Journal, 14 (16), 2883-2888. DOI: 10.1002/asia.201900477
  8. Li, M.F., Liu, Y.G., Zeng, G.M., Liu, N., Liu, S.B. (2019) Graphene and graphene-based nanocomposites used for antibiotics removal in water treatment: A review. Chemosphere, 226, 360-380. DOI: 10.1016/j.chemosphere.2019.03.117
  9. Luo, L.X., Zhang, M.J., Wang, B., Mei, L.Y., Li, B.H. (2019) Gra Pilot-scale Application Test of Low-intensity Ultrasonic-enhanced Coagulation Technology. Industrial Safety and Environmental Protection, 45(01), 12-14. (in chinese)
  10. Vijayaraghavan, K., Yun, Y.-S. (2007) Utilization of fermentation waste (Corynebacterium glutamicum) for biosorption of Reactive Black 5 from aqueous solution. J. Hazard. Mater., 141(1), 45-52. DOI: 10.1016/j.jhazmat.2006.06.081
  11. Ma, L. (2022) Study on the Treatment of Azo Dye Wastewater by CoMnFe-Hydrotalcite/Graphene Activated Persulfate. Anshan: University of Science and Technology Liaoning, 2022. (in chinese)
  12. Kou, Q.Q. (2022) Research on the Degradation of Dye Wastewater by Iron-Manganese Oxide Composite Carbon Nanotubes Activated Persulfate. Chongqing: Chongqing University, 2022. (in chinese)
  13. Mohod, A.V., Momotko, M., Shah, N.S., Marchel, M., Imran, M., Kong, L., Boczkaj, G. (2023) Degradation of Rhodamine dyes by Advanced Oxidation Processes (AOPs) – Focus on cavitation and photocatalysis - A critical review. Water Resources and Industry, 30, 100220-100249. DOI: 10.1016/j.wri.2023.100220
  14. Zhou, B., Wang, J.J., Dangal, P., Lomnicki, S., Roy, A.D., Park, J.H. (2024) A novel sugarcane residue-derived bimetallic Fe/Mn-biochar composite for activation of peroxymonosulfate in advanced oxidation process removal of azo dye: Degradation behavior and mechanism. Journal of Water Process Engineering, 58, 104740-104754. DOI: 10.1016/j.jwpe.2023.104740
  15. Sun, Y., Zhao, J., Zhang, B.-T., Li, J., Shi, Y., Zhang, Y. (2019) Oxidative degradation of chloroxylenol in aqueous solution by thermally activated persulfate: Kinetics, mechanisms and toxicities. Chem. Eng. J., 368, 553-563. DOI: 10.1016/j.cej.2019.02.208
  16. Wu, .J, Wang, B., Cagnetta, G., Huang, J., Wang, Y., Deng, S., Yu, G. (2020) (Nanoscale zero valent iron-activated persulfate coupled with Fenton oxidation process for typical pharmaceuticals and personal care products degradation. Separation and Purification Technology, 239, 116534-116542. DOI: 10.1016/j.seppur.2020.116534
  17. Wu, G., Kong, W., Gao, Y., Kong, Y., Dai, Z., Dan, H., Shang, Y., Wang, S., Yin, F., Yue, Q., Gao, B. (2022) Removal of chloramphenicol by sulfide-modified nanoscale zero-valent iron activated persulfate: Performance, salt resistance, and reaction mechanisms. Chemosphere, 286, 131876-131887. DOI: 10.1016/j.chemosphere.2021.131876
  18. Zubir, N.A., Yacou C., Motuzas, J., Zhang, X., Diniz da Costa, J.C. (2014) Structural and functional investigation of graphene oxide–Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction. Scientific Reports, 4(1), 4594. DOI: 10.1038/srep04594
  19. Song, M., Nguyen, Q.B., Kim, C., Hwang, I. (2023) Sustained activation of persulfate by slow release of Fe(II) from silica-coated nanosized zero-valent iron for in situ chemical oxidation. Water Res., 246, 120715-120725. DOI: 10.1016/j.watres.2023.120715
  20. Park, C.M., Heo, J., Wang, D., Su, C., Yoon, Y. (2018) Heterogeneous activation of persulfate by reduced graphene oxide-elemental silver/magnetite nanohybrids for the oxidative degradation of pharmaceuticals and endocrine disrupting compounds in water. Applied Catalysis B Environmental An International Journal Devoted to Catalytic Science & Its Applications, 225, 91-99. DOI: 10.1016/j.apcatb.2017.11.058
  21. Fu, H., Zhao, P., Xu, S., Cheng, G., Li, Z., Li, Y., Li, K., Ma, S. (2019) Fabrication of Fe3O4 and graphitized porous biochar composites for activating peroxymonosulfate to degrade p-hydroxybenzoic acid: Insights on the mechanism. Chem. Eng. J., 375, 121980-121993. DOI: 10.1016/j.cej.2019.121980
  22. Yu, Y., Guo, H., Zhong, Z., Wang, A., Xiang, M., Xu, S., Dong, C., Chang, Z. (2022) Fe3O4 loaded on ball milling biochar enhanced bisphenol a removal by activating persulfate: Performance and activating mechanism. J. Environ. Manage., 319, 115661-115672. DOI: 10.1016/j.jenvman.2022.115661
  23. Dolatabadi, M., Świergosz, T., Wang, C., Ahmadzadeh, S. (2023) Accelerated degradation of groundwater-containing malathion using persulfate activated magnetic Fe3O4/graphene oxide nanocomposite for advanced water treatment. Arabian Journal of Chemistry, 16(1), 104424-104437. DOI: 10.1016/j.arabjc.2022.104424
  24. Dibaji, Y., Zilouei, H., Bazarganipour, M. (2023) Removal of MTBE from aqueous solution using reduced graphene oxide/Fe3O4 nanocomposite. Environmental Nanotechnology, Monitoring & Management, 20, 100842-100853. DOI: 10.1016/j.enmm.2023.100842
  25. Wang, S., Wang, J. (2024) Ionizing radiation-assisted in-situ synthesis of nitrogen-doped graphene oxide-supported nano Fe3O4 for PMS activation to degrade emerging pollutants. Radiation Physics and Chemistry, 214, 111312-111318. DOI: 10.1016/j.radphyschem.2023.111312
  26. Peng, S.-Y., Lin, Y.-W., Lin, Y.-Y., Lin, K.L. (2024) Hydrothermal synthesis of hydroxyapatite nanocrystals from calcium-rich limestone sludge waste: Preparation, characterization, and application for Pb2+ adsorption in aqueous solution. Inorganic Chemistry Communications, 160, 111943-111956. DOI: 10.1016/j.inoche.2023.111943
  27. Feng, P., Zhao, R., Yang, L., Chen, S., Wang, D., Pan, H., Shuai, C. (2022) Hydrothermal synthesis of hydroxyapatite nanorods and their use in PCL bone scaffold. Ceramics International, 48(22), 33682-33692. DOI: 10.1016/j.ceramint.2022.07.314
  28. Zhu, X., Zhang, B., Ye, Z., Shi, H., Shen, Y., Li, G. (2015) An ATP-responsive smart gate fabricated with a graphene oxide-aptamer-nanochannel architecture. Chem. Commun., 51(4), 640-643. DOI: 10.1039/c4cc07990f
  29. Vuong Hoan, N.T., Anh Thu, N.T., Duc, H.V., Cuong, N.D., Quang Khieu, D., Vo, V. (2016) Fe3O4/Reduced Graphene Oxide Nanocomposite: Synthesis and Its Application for Toxic Metal Ion Removal. Journal of Chemistry, 2016, 1-10. DOI: 10.1155/2016/2418172
  30. Li, L., Shi, K., Xiong, S., Zhang, S., Shan, Z., Qian, G., Zhai, X., Xiao, P., Narayanasamy, S. (2023) Study on Phosphorus Adsorption Performance of Inorganic Modified Green Mudstone. Adsorpt. Sci. Technol., 2023, 1-14. DOI: 10.1155/2023/3574652
  31. Xiao, S., Zhang, L., Zhou, L., Zhong, H., Brusseau, M.L., Li, Y., Wang, Y., Liu, G., Zhang, J. (2024) The long-term effect of Fe3O4 in activating persulfate to degrade refractory organic contaminants for groundwater remediation. Chem. Eng. J., 482, 148801-148813. DOI: 10.1016/j.cej.2024.148801
  32. Zhang, W.Q. (2024) Research on the Degradation of Bisphenol A in Water by Activated Carbon-supported Iron-manganese Oxides Activated Persulfate. Nanchang: Nanchang University. (in chinese)
  33. Liu, J., Zhao, Z., Shao, P., Cui, F. (2015) Activation of peroxymonosulfate with magnetic Fe3O4–MnO2 core–shell nanocomposites for 4-chlorophenol degradation. Chem. Eng. J., 262, 854-861. DOI: 10.1016/j.cej.2014.10.043
  34. Xu, Y., Dong, X., Chen, Y., Liu, N., Zhang, X., Song, C., Fan, X. (2024) Constructing 3D hierarchical Fe@RGO supported nitrogen-doped carbon nanotubes to enhance peroxymonosulfate activation for achieving efficient antibiotic degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 702, 135017-135029. DOI: 10.1016/j.colsurfa.2024.135017
  35. Liu, L., Lin, S., Zhang, W., Farooq, U., Shen, G., Hu, S. (2018) Kinetic and mechanistic investigations of the degradation of sulfachloropyridazine in heat-activated persulfate oxidation process. Chem. Eng. J., 346, 515-524, DOI: 10.1016/j.cej.2018.04.068
  36. Cao, H.L. (2020) Research on the Preparation of Iron-based Composite Materials Based on Persulfate and the Efficiency of Removing Reactive Black 5. Nanchang: Nanchang University. (in chinese)
  37. Zeng, T., Zhang, X., Wang, S., Niu, H., Cai, Y. (2015) Spatial Confinement of a Co3O4 Catalyst in Hollow Metal–Organic Frameworks as a Nanoreactor for Improved Degradation of Organic Pollutants. Environmental Science & Technology, 49(4), 2350-2357. DOI: 10.1021/es505014z
  38. Ma, W., Wang, N., Du, Y., Tong, T., Zhang, L., Andrew Lin, K.Y., Han, X. (2019) One-step synthesis of novel Fe3C@nitrogen-doped carbon nanotubes/graphene nanosheets for catalytic degradation of Bisphenol A in the presence of peroxymonosulfate. Chem. Eng. J., 356, 1022-1031. DOI: 10.1016/j.cej.2018.09.093

Last update:

No citation recorded.

Last update:

No citation recorded.