skip to main content

Modeling Syngas Fermentation for Ethanol Production under Fluctuating Inlet Gas Composition

1Doctoral Program of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia

2Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia

3Department of Food Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia

Received: 17 Mar 2025; Revised: 18 Apr 2025; Accepted: 21 Apr 2025; Available online: 24 Apr 2025; Published: 30 Aug 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Syngas fermentation effectively converts CO, H₂, and CO₂ into valuable biofuels and chemicals. This study investigated the effects of fluctuating syngas composition and kLa as the critical operational parameters on microbial fermentation performance, with a focus on ethanol, acetic acid, and biomass production. Modeling results demonstrated that increasing CO concentration significantly enhanced metabolite production, whereas increases in H₂ and CO₂ concentrations yielded limited improvements. The findings revealed that a higher H₂/CO ratio tent to reduce metabolite production, while a higher CO/CO₂ ratio significantly improved fermentation outcomes. Additionally, higher kLa values were observed to promote metabolite production, though diminishing returns were evident at very high kLa levels. Further study on the impact of syngas composition disturbances (±5% to ±20%) and fluctuation durations (0.5, 1, 2, and 4 days) indicated that larger disturbances and longer fluctuation durations led to greater deviations in metabolite concentrations, with ethanol being the most sensitive, followed by acetic acid and biomass. Despite these fluctuations, the microbial system displayed resilience, stabilizing once gas composition returned to normal levels. These insights underscored the adaptability and robustness of syngas fermentation systems, making them viable for industrial applications where gas composition variability is inevitable. The ability to tolerate moderate fluctuations offers opportunities to reduce gas pretreatment costs and process syngas from diverse sources, benefiting industries such as steel manufacturing, oil refining, and biomass gasification. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Ethanol Production; Inlet Gas Composition Fluctuation; kLa; Model Simulation; Syngas Fermentation
Funding: BPP – DN scholarships in 2019 with contract number B/67/D.D3/KD.02.00/2019; BP-PTNBH BRIN 2021 (PN-1) with contract number 2/E1/KP.PTNBH/2021

Article Metrics:

  1. Dominguez-Ramos, A., Irabien, A. (2020). The role of power-to-gas in the European Union. Green Chemical Engineering, 1(1), 6–8. DOI: 10.1016/J.GCE.2020.10.002
  2. Liew, F.M., Martin, M.E., Tappel, R.C., Heijstra, B.D., Mihalcea, C., Köpke, M. (2016). Gas Fermentation-A flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. Frontiers in Microbiology, 7(MAY) DOI: 10.3389/fmicb.2016.00694
  3. Tse, T.J., Wiens, D..J., Chicilo, F., Purdy, S.K., Reaney, M.J.T. (2021). Value-Added Products from Ethanol Fermentation—A Review. Fermentation, 7, 4, 267. DOI: 10.3390/fermentation7040267
  4. Pedraza, L., Flores, A., Toribio, H., Quintero, R., Le Borgne, S., Moss-Acosta, C., Martinez, A. (2016). Sequential Thermochemical Hydrolysis of Corncobs and Enzymatic Saccharification of the Whole Slurry Followed by Fermentation of Solubilized Sugars to Ethanol with the Ethanologenic Strain Escherichia coli MS04. Bioenergy Research, 9(4), 1046–1052. DOI: 10.1007/s12155-016-9756-9
  5. Devi, A., Niazi, A., Ramteke, M., Upadhyayula, S. (2021). Techno-economic analysis of ethanol production from lignocellulosic biomass–a comparison of fermentation, thermo catalytic, and chemocatalytic technologies. Bioprocess and Biosystems Engineering, 44(6), 1093–1107. DOI: 10.1007/s00449-020-02504-4
  6. Sun, Y., Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83(1), 1–11. DOI: 10.1016/S0960-8524(01)00212-7
  7. Foust, T.D., Aden, A., Dutta, A., Phillips, S. (2009). An economic and environmental comparison of a biochemical and a thermochemical lignocellulosic ethanol conversion processes. Cellulose, 16(4), 547–565. DOI: 10.1007/s10570-009-9317-x
  8. Devarapalli, M., Journal, H.A.-B.R., 2015, U. (2015). A review of conversion processes for bioethanol production with a focus on syngas fermentation. Biofuel Research Journal, 7, 268–280
  9. García-Aparicio, M.P., Ballesteros, I., González, A., Oliva, J.M., Ballesteros, M., Negro, M.J. (2007). Effect of Inhibitors Released During Steam-Explosion Pretreatment of Barley Straw on Enzymatic Hydrolysis. In: Twenty-Seventh Symposium on Biotechnology for Fuels and Chemicals. Humana Press, pp. 278–288.DOI: 10.1007/978-1-59745-268-7_22
  10. Hidayatullah, I.M., Setiadi, T., Kresnowati, M.T.A.P., Boopathy, R. (2020). Xylanase inhibition by the derivatives of lignocellulosic material. Bioresource Technology, 300, 122740. DOI: 10.1016/J.BIORTECH.2020.122740
  11. Zhang, Y., Ji, Y., Qian, H. (2021). Progress in thermodynamic simulation and system optimization of pyrolysis and gasification of biomass. Green Chemical Engineering, 2(3), 266–283. DOI: 10.1016/J.GCE.2021.06.003
  12. Li, J., Li, L., Tong, Y.W., Wang, X. (2023). Understanding and optimizing the gasification of biomass waste with machine learning. Green Chemical Engineering, 4(1), 123–133. DOI: 10.1016/J.GCE.2022.05.006
  13. Fang, Y., Paul, M.C., Varjani, S., Li, X., Park, Y.K., You, S. (2021). Concentrated solar thermochemical gasification of biomass: Principles, applications, and development. Renewable and Sustainable Energy Reviews, 150, 111484. DOI: 10.1016/J.RSER.2021.111484
  14. Griffin, D.W., Schultz, M.A. (2012). Fuel and chemical products from biomass syngas: A comparison of gas fermentation to thermochemical conversion routes. Environmental Progress & Sustainable Energy, 31(2), 219–224. DOI: 10.1002/EP.11613
  15. Munasinghe, P.C., Khanal, S.K. (2010). Syngas fermentation to biofuel: Evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations. Biotechnology Progress, 26(6), 1616–1621. DOI: 10.1002/btpr.473
  16. Philips, J., Rabaey, K., Lovley, D.R., Vargas, M. (2017). Biofilm formation by clostridium ljungdahlii is induced by sodium chloride stress: Experimental evaluation and transcriptome analysis. PLoS ONE, 12(1) DOI: 10.1371/journal.pone.0170406
  17. Liu, K., Atiyeh, H.K., Tanner, R.S., Wilkins, M.R., Huhnke, R.L. (2012). Fermentative production of ethanol from syngas using novel moderately alkaliphilic strains of Alkalibaculum bacchi. Bioresource Technology, 104, 336–341. DOI: 10.1016/j.biortech.2011.10.054
  18. Drake, H.L., Gößner, A.S., Daniel, S.L. (2008). Old acetogens, new light. Annals of the New York Academy of Sciences, 1125, 100–128. DOI: 10.1196/annals.1419.016
  19. Daniell, J., Köpke, M., Simpson, S.D. (2012). Commercial biomass syngas fermentation. Energies (Basel) 5:5372–5417
  20. Jiang, Y., Guo, D., Lu, J., Dürre, P., Dong, W., Yan, W., Zhang, W., Ma, J., Jiang, M., Xin, F. (2018). Consolidated bioprocessing of butanol production from xylan by a thermophilic and butanologenic Thermoanaerobacterium sp. M5. Biotechnology for Biofuels, 11(1), 1–14. DOI: 10.1186/s13068-018-1092-1
  21. Ramachandriya, K.D., Kundiyana, D.K., Wilkins, M.R., Terrill, J.B., Atiyeh, H.K., Huhnke, R.L. (2013). Carbon dioxide conversion to fuels and chemicals using a hybrid green process. Applied Energy, 112, 289–299. DOI: 10.1016/j.apenergy.2013.06.017
  22. Sato, H., Matubayasi, N., Nakahara, M., Hirata, F. (2000). Which carbon oxide is more soluble? Ab initio study on carbon monoxide and dioxide in aqueous solution. Chemical Physics Letters, 323, 257-262. DOI: 10.1016/S0009-2614(00)00508-X
  23. Mukti, R., Setiadi, T., Kresnowati, M.T.A.P. (2023). Challenges in Syngas Fermentation for Bioethanol Production: Syngas Composition. Engineering Chemistry, 1, 9-19. DOI: 10.4028/p-9g14o1
  24. Abubackar, H.N., Veiga, M.C., Kennes, C. (2011). Biological conversion of carbon monoxide: Rich syngas or waste gases to bioethanol. Biofuels, Bioproducts and Biorefining, 5, 93–114. DOI: 10.1002/bbb.256
  25. Phillips, J.R., Huhnke, R.L., Atiyeh, H.K. (2017). Syngas fermentation: A microbial conversion process of gaseous substrates to various products. Fermentation, 3(2). DOI: 10.3390/fermentation3020028
  26. Gao, Y., Wang, M., Raheem, A., Wang, F., Wei, J., Xu, D., Song, X., Bao, W., Huang, A., Zhang, S., Zhang, H. (2023). Syngas Production from Biomass Gasification: Influences of Feedstock Properties, Reactor Type, and Reaction Parameters. ACS Omega, 8, 31620–31631. DOI: 10.1021/acsomega.3c03050
  27. Ahmed, A., Cateni, B.G., Huhnke, R.L., Lewis, R.S. (2006). Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7T. Biomass and Bioenergy, 30(7), 665–672. DOI: 10.1016/j.biombioe.2006.01.007
  28. Datar, R.P., Shenkman, R.M., Cateni, B.G., Huhnke, R.L., Lewis, R.S. (2004). Fermentation of biomass-generated producer gas to ethanol. Biotechnology and Bioengineering, 86(5), 587–594. DOI: 10.1002/bit.20071
  29. Kundiyana, D.K., Huhnke, R.L., Wilkins, M.R. (2010). Syngas fermentation in a 100-L pilot scale fermentor: Design and process considerations. Journal of Bioscience and Bioengineering, 109(5), 492–498. DOI: 10.1016/j.jbiosc.2009.10.022
  30. Kundiyana, D.K., Huhnke, R.L., Wilkins, M.R. (2010). Syngas fermentation in a 100-L pilot scale fermentor: Design and process considerations. Journal of Bioscience and Bioengineering, 109(5), 492–498. DOI: 10.1016/j.jbiosc.2009.10.022
  31. Orgill, J.J., Lewis, R.S., Atiyeh, H.K. (2013). Syngas mass transfer analysis in a hollow fiber reactor. In: Energy and Transport Processes 2013 - Core Programming Area at the 2013 AIChE Annual Meeting: Global Challenges for Engineering a Sustainable Future. AIChE, p. 64
  32. Jack, J., Lo, J., Maness, P.C., Ren, Z.J. (2019). Directing Clostridium ljungdahlii fermentation products via hydrogen to carbon monoxide ratio in syngas. Biomass and Bioenergy, 124, 95–101. DOI: 10.1016/j.biombioe.2019.03.011
  33. de Medeiros, E.M., Posada, J.A., Noorman, H., Filho, R.M. (2019). Dynamic modeling of syngas fermentation in a continuous stirred-tank reactor: Multi-response parameter estimation and process optimization. Biotechnology and Bioengineering, 116(10), 2473–2487. DOI: 10.1002/bit.27108
  34. Phillips, J.R., Klasson, K.T., Clausen, E.C., Gaddy, J.L. (1993). Biological Production of Ethanol from Coal Synthesis Gas Medium Development Studies. Applied Biochemistry and Biotechnology, 39, 559–571. DOI: https://doi.org/10.1007/BF02919018
  35. de Medeiros, E.M., Posada, J.A., Noorman, H., Filho, R.M. (2019). Dynamic modeling of syngas fermentation in a continuous stirred-tank reactor: Multi-response parameter estimation and process optimization. Biotechnology and Bioengineering, 116(10), 2473–2487. DOI: 10.1002/bit.27108
  36. Jeoung, J.H., Fesseler, J., Goetzl, S., Dobbek, H. (2014). Carbon monoxide. Toxic gas and fuel for anaerobes and aerobes: Carbon monoxide dehydrogenases. Metal Ions in Life Sciences, 14–113, 37–69. DOI: 10.1007/978-94-017-9269-1_3
  37. Hermann, M., Teleki, A., Weitz, S., Niess, A., Freund, A., Bengelsdorf, F.R., Takors, R. (2020). Electron availability in CO2, CO and H2 mixtures constrains flux distribution, energy management and product formation in Clostridium ljungdahlii. Microbial Biotechnology, 13(6), 1831–1846. DOI: 10.1111/1751-7915.13625
  38. Ragsdale, S.W., Pierce, E. (2008). Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1784(12), 1873–1898. DOI: 10.1016/J.BBAPAP.2008.08.012
  39. Bertsch, J., Müller, V. (2015). Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnology for Biofuels, 8(1), 1-12. DOI: 10.1186/s13068-015-0393-x
  40. Mohammadi, M., Najafpour, G.D., Younesi, H., Lahijani, P., Uzir, M.H., Mohamed, A.R. (2011). Bioconversion of synthesis gas to second generation biofuels: A review. Renewable and Sustainable Energy Reviews, 15(9), 4255–4273. DOI: 10.1016/j.rser.2011.07.124
  41. Keryanti, Kresnowati, M.T.A.P., Setiadi, T. (2019). Evaluation of gas mass transfer in reactor for syngas fermentation. In: AIP Conference Proceedings. American Institute of Physics Inc.DOI: 10.1063/1.5094986
  42. Carvalho, M.M.O., Cardoso, M., Vakkilainen, E.K. (2015). Biomass gasification for natural gas substitution in iron ore pelletizing plants. Renewable Energy, 81, 566–577. DOI: 10.1016/j.renene.2015.03.056
  43. Riggs, S.S., Heindel, T.J. (2006). Measuring carbon monoxide gas-liquid mass transfer in a stirred tank reactor for syngas fermentation. Biotechnology Progress, 22(3), 903–906. DOI: 10.1021/bp050352f
  44. Kapic, A., Jones, S.T., Heindel, T.J. (2006). Carbon monoxide mass transfer in a syngas mixture. Industrial and Engineering Chemistry Research, 45(26), 9150–9155. DOI: 10.1021/ie060655u
  45. Anggraini, I.D., Keryanti, Kresnowati, M.T.A.P., Purwadi, R., Noda, R., Watanabe, T., Setiadi, T. (2019). Bioethanol production via syngas fermentation of clostridium ljungdahlii in a hollow fiber membrane supported bioreactor. International Journal of Technology, 10(3), 481–490. DOI: 10.14716/ijtech.v10i3.2913
  46. Shen, Y., Brown, R., Wen, Z. (2014). Enhancing mass transfer and ethanol production in syngas fermentation of Clostridium carboxidivorans P7 through a monolithic biofilm reactor. Applied Energy, 136, 68–76. DOI: 10.1016/j.apenergy.2014.08.117
  47. Green, D.W., and M.Z.S. (2019). Perry’s Chemical Engineers’ Handbook, 9th Edition. New York: McGraw-Hill Education

Last update:

No citation recorded.

Last update:

No citation recorded.