1Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao Rd, Ho Chi Minh City 700000, Viet Nam
2An Khanh ward, Thu Duc , Ho Chi Minh City, Viet Nam
3Faculty of Chemical Engineering, Ho Chi Minh City University of Industry and Trade, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City 700000, Viet Nam
BibTex Citation Data :
@article{BCREC20368, author = {Thi Thuy Hong Vu and Thi Diem Bui and Le Huu Khanh Nguyen and Thi Hong Anh Nguyen}, title = {Polyethyleneimine-Functionalized Magnetic Bagasse Composite for Efficient Adsorptive Removal of Yellow 4GL and Black R–S Dyes}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {20}, number = {2}, year = {2025}, keywords = {Magnetic bagasse; Polyethyleneimine; Yellow 4GL; Black R-S; Wastewater treatment.}, abstract = { Efficient removal of dye contaminants from wastewater remains a significant environmental challenge. In this study, a polyethyleneimine (PEI)-modified magnetic bagasse composite was synthesized by integrating sugarcane bagasse, PEI, Fe₃O₄ nanoparticles, and glutaraldehyde as cross-linking. The synthesized material was comprehensively characterized using SEM, BET, XRD, TGA, and FTIR techniques to elucidate its structural and physicochemical properties. Adsorption experiments were performed to investigate the effects of adsorbent dosage, initial dye concentration, pH, and contact time on the removal efficiency of Yellow 4GL and Black R-S dyes. The PEI-magnetic bagasse composite (PMBC) demonstrated impressive adsorption capacities of 185.19 mg/g for Yellow 4GL and 204.08 mg/g for Black R-S. The adsorption kinetics conformed to the pseudo-second-order model, indicating that chemisorption dominated the process, driven by electrostatic interactions and hydrogen bonding between the amino groups of PEI and the sulfonate groups of the dyes. }, issn = {1978-2993}, pages = {318--330} doi = {10.9767/bcrec.20368}, url = {https://journal.bcrec.id/index.php/bcrec/article/view/20368} }
Refworks Citation Data :
Efficient removal of dye contaminants from wastewater remains a significant environmental challenge. In this study, a polyethyleneimine (PEI)-modified magnetic bagasse composite was synthesized by integrating sugarcane bagasse, PEI, Fe₃O₄ nanoparticles, and glutaraldehyde as cross-linking. The synthesized material was comprehensively characterized using SEM, BET, XRD, TGA, and FTIR techniques to elucidate its structural and physicochemical properties. Adsorption experiments were performed to investigate the effects of adsorbent dosage, initial dye concentration, pH, and contact time on the removal efficiency of Yellow 4GL and Black R-S dyes. The PEI-magnetic bagasse composite (PMBC) demonstrated impressive adsorption capacities of 185.19 mg/g for Yellow 4GL and 204.08 mg/g for Black R-S. The adsorption kinetics conformed to the pseudo-second-order model, indicating that chemisorption dominated the process, driven by electrostatic interactions and hydrogen bonding between the amino groups of PEI and the sulfonate groups of the dyes.
Article Metrics:
Last update:
In order for Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group. This agreement deals with the transfer or license of the copyright of publishing to Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group, while Authors still retain significant rights to use and share their own published articles. Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal (Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2024]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id ; bcrec[at]che.undip.ac.id
(This policy statements has been updated at 24th January 2024)