skip to main content

Polyethyleneimine-Functionalized Magnetic Bagasse Composite for Efficient Adsorptive Removal of Yellow 4GL and Black R–S Dyes

1Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao Rd, Ho Chi Minh City 700000, Viet Nam

2An Khanh ward, Thu Duc , Ho Chi Minh City, Viet Nam

3Faculty of Chemical Engineering, Ho Chi Minh City University of Industry and Trade, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City 700000, Viet Nam

Received: 14 Mar 2025; Revised: 12 Apr 2025; Accepted: 13 Apr 2025; Available online: 16 Apr 2025; Published: 30 Aug 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Efficient removal of dye contaminants from wastewater remains a significant environmental challenge. In this study, a polyethyleneimine (PEI)-modified magnetic bagasse composite was synthesized by integrating sugarcane bagasse, PEI, Fe₃O₄ nanoparticles, and glutaraldehyde as cross-linking. The synthesized material was comprehensively characterized using SEM, BET, XRD, TGA, and FTIR techniques to elucidate its structural and physicochemical properties. Adsorption experiments were performed to investigate the effects of adsorbent dosage, initial dye concentration, pH, and contact time on the removal efficiency of Yellow 4GL and Black R-S dyes. The PEI-magnetic bagasse composite (PMBC) demonstrated impressive adsorption capacities of 185.19 mg/g for Yellow 4GL and 204.08 mg/g for Black R-S. The adsorption kinetics conformed to the pseudo-second-order model, indicating that chemisorption dominated the process, driven by electrostatic interactions and hydrogen bonding between the amino groups of PEI and the sulfonate groups of the dyes.

Keywords: Magnetic bagasse; Polyethyleneimine; Yellow 4GL; Black R-S; Wastewater treatment.
Funding: Industrial University of Ho Chi Minh City ; Ho Chi Minh City University of Industry and Trade

Article Metrics:

  1. Baloo, L., Isa, M.H., Sapari, N. Bin, Jagaba, A.H., Wei, L.J., Yavari, S., Razali, R., Vasu, R. (2021). Adsorptive removal of methylene blue and acid orange 10 dyes from aqueous solutions using oil palm wastes-derived activated carbons. Alexandria Engineering Journal, 60(6), 5611–5629. DOI: 10.1016/j.aej.2021.04.044
  2. Pavithra, K., Engineering, V.J.-J. of I. and, 2019, undefined (2019). Removal of colorants from wastewater: A review on sources and treatment strategies. Journal of Industrial and Engineering Chemistry, 75, 1–19. DOI: 10.1016/j.jiec.2019.02.011
  3. Xiang, H., Min, X., Tang, C.-J., Sillanpää, M., Zhao, F. (2022). Recent advances in membrane filtration for heavy metal removal from wastewater: A mini review. Journal of Water Process Engineering, 49, 103023. DOI: 10.1016/j.jwpe.2022.103023
  4. Bui Bao Long, P., Nguyen, V.C., Pham, H.A. Le, Ta, Q.T.H., Dang, H.P. (2025). Effect of the Dimethylformamide/Isopropanol Solvent Ratio on the Structure, Optical Properties, and Photodegradation Performance of RhB Using Bi-MOF. Bulletin of Chemical Reaction Engineering & Catalysis, 20(1), 166–176. DOI: 10.9767/bcrec.20345
  5. Aruna, Bagotia, N., Sharma, A.K., Kumar, S. (2021). A review on modified sugarcane bagasse biosorbent for removal of dyes. Chemosphere, 268, 129309. DOI: 10.1016/j.chemosphere.2020.129309
  6. Deng, Z., Luo, Y., Bian, M., Guo, X., Zhang, N. (2023). Synthesis of easily renewable and recoverable magnetic PEI-modified Fe3O4 nanoparticles and its application for adsorption and enrichment of tungsten from aqueous solutions. Environmental Pollution, 330, 121703. DOI: 10.1016/j.envpol.2023.121703
  7. Xia, T., Guan, Y., Yang, M., Xiong, W., Wang, N., Zhao, S., Guo, C. (2014). Synthesis of polyethylenimine modified Fe3O4 nanoparticles with immobilized Cu2+ for highly efficient proteins adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 443, 552–559. DOI: 10.1016/j.colsurfa.2013.12.026
  8. Tsague, C.F., Abbo, H.S., Yufanyi, D.M., Ondoh, A.M., Titinchi, S.J.J. (2023). Recyclable functionalized polyethyleneimine-coated magnetic nanoparticles for efficient removal of lead from aqueous solutions. Journal of Chemical Technology & Biotechnology, 98(8), 2023–2038. DOI: 10.1002/jctb.7423
  9. Chen, B., Xie, H., Zhang, A., Liu, N., Li, Q., Guo, J., Su, B. (2019). Synthesis of PEI-Functionalized Magnetic Nanoparticles for Capturing Bacteria. Journal of Wuhan University of Technology-Mater Sci Ed, 34(1), 236–242. DOI: 10.1007/s11595-019-2041-y
  10. Liou, T.H., Huang, J.J. (2024). Efficient Removal of Hazardous P-Nitroaniline from Wastewater by Using Surface-Activated and Modified Multiwalled Carbon Nanotubes with Mesostructure. Toxics, 12(1) DOI: 10.3390/toxics12010088
  11. Zulfiqar, N., Nadeem, R., Musaimi, O.A. (2023). Photocatalytic Degradation of Antibiotics via Exploitation of a Magnetic Nanocomposite: A Green Nanotechnology Approach toward Drug-Contaminated Wastewater Reclamation. ACS Omega. 9, 7, 7986–8004. DOI: 10.1021/acsomega.3c08116
  12. Yakut, Ş.M. (2023). Treatment of textile wastewater with cherry laurel leaves and waste potato peels. Eurasian Journal of Science Engineering and Technology, 4(1) DOI: 10.55696/ejset.1296953
  13. Samarghandi, M.R., Zarrabi, M., Amrane, A., Soori, M.M., Sepehr, M.N. (2018). Removal of acid black dye by pumice stone as a low cost adsorbent: kinetic, thermodynamic and equilibrium studies. Environmental Engineering and Management Journal, 12(11) DOI: 10.30638/eemj.2013.265
  14. Nguyen, V.C., Hieu, T.Q., Thien, P.T., Vu, L.D., V T, Le. (2017). Reusable starch-graft-polyaniline/Fe3O4 composite for removal of textile dyes. Rasayan Journal of Chemistry, 10(4), 1446–1454. DOI: 10.7324/RJC.2017.1041894
  15. Hassan, M.M., Carr, C.M. (2021). Biomass-derived porous carbonaceous materials and their composites as adsorbents for cationic and anionic dyes: A review. Chemosphere 265, February 2021, 129087. DOI: 10.1016/j.chemosphere.2020.129087
  16. Ngamsurach, P., Nemkhuntod, S., Chanaphan, P., Praipipat, P. (2022). Modified Beaded Materials from Recycled Wastes of Bagasse and Bagasse Fly Ash with Iron(III) Oxide-Hydroxide and Zinc Oxide for the Removal of Reactive Blue 4 Dye in Aqueous Solution. ACS Omega, 7(39) DOI: 10.1021/acsomega.2c03250
  17. Birniwa, A.H., Mahmud, H.N.M.E., Abdullahi, S.S., Habibu, S., Jagaba, A.H., Ibrahim, M.N.M., Ahmad, A., Alshammari, M.B., Parveen, T., Umar, K. (2022). Adsorption Behavior of Methylene Blue Cationic Dye in Aqueous Solution Using Polypyrrole-Polyethylenimine Nano-Adsorbent. Polymers, 14(16) DOI: 10.3390/polym14163362
  18. Thi Hong Anh, N., Thanh Phuc, T., Nguyen Minh An, T., Pho Quoc, H., Nguyen, V.C. (2020). Microwave-Assisted Preparation of Magnetic Citric Acid-Sugarcane Bagasse for Removal of Textile Dyes. Indonesian Journal of Chemistry, 20(5), 1101. DOI: 10.22146/ijc.48713
  19. Maryana, R., Muryanto, Triwahyuni, E., Oktaviani, O., Prasetia, H., Das, A.K., Sudiyani, Y. (2022). Extraction of Cellulose Acetate from Cajuput (Melaleuca leucadendron) Twigs and Sugarcane (Saccharum officinarum) Bagasse by Environmentally Friendly Approach. Waste and Biomass Valorization, 13(3), 1535–1545. DOI: 10.1007/s12649-021-01610-y
  20. Huong, T.T., Doan Trang, T.Y. (2023). Synthesis of a cost-effective magnetic nanoparticles coated sugarcane bagasse and testing tetracycline removal capacity. In: E3S Web of Conferences. DOI: 10.1051/e3sconf/202344305005
  21. Moretti, M.M. de S., Perrone, O.M., Nunes, C. da C.C., Taboga, S., Boscolo, M., da Silva, R., Gomes, E. (2016). Effect of pretreatment and enzymatic hydrolysis on the physical-chemical composition and morphologic structure of sugarcane bagasse and sugarcane straw. Bioresource Technology, 219, 773–777. DOI: 10.1016/j.biortech.2016.08.075
  22. Dermawan, D., Satriavi, A.D., Nurhidayati, D.I., Firnandi, R., Mayangsari, N.E., Ramadani, T.A., Widiana, D.R., Juniani, A.I., Mujiyanti, D.R., Wang, Y.F. (2025). Composite adsorbent from sugarcane (Saccharum officinarum) bagasse biochar generated from atmospheric pressure microwave plasma pyrolysis process and nano zero valent iron (nZVI) for rapid and highly efficient Cr(VI) adsorption. Case Studies in Chemical and Environmental Engineering, 11, 101123. DOI: 10.1016/j.cscee.2025.101123
  23. Abu Elgoud, E.M., Abd-Elhamid, A.I., Aly, H.F. (2024). Adsorption behavior of Mo(VI) from aqueous solutions using tungstate-modified magnetic nanoparticle. Environmental Science and Pollution Research, 31(12), 18900–18915. DOI: 10.1007/s11356-024-32251-y
  24. Congsomjit, D., Areeprasert, C. (2021). Hydrochar-derived activated carbon from sugar cane bagasse employing hydrothermal carbonization and steam activation for syrup decolorization. Biomass Conversion and Biorefinery, 11(6), 2569–2584. DOI: 10.1007/s13399-020-00635-y
  25. Aramesh, N., Bagheri, A.R., Bilal, M. (2021). Chitosan-based hybrid materials for adsorptive removal of dyes and underlying interaction mechanisms. International Journal of Biological Macromolecules, 183, 399–422. DOI: 10.1016/j.ijbiomac.2021.04.158
  26. Nizam, N.U.M., Hanafiah, M.M., Mahmoudi, E., Halim, A.A., Mohammad, A.W. (2021). The removal of anionic and cationic dyes from an aqueous solution using biomass-based activated carbon. Scientific Reports, 11(1), 8623. DOI: 10.1038/s41598-021-88084-z
  27. Nguyen, T.H.A., Tran, T.D.M., Ky Vo, T., Nguyen, Q.T., Nguyen, V.-C. (2023). Facile synthesis of low-cost chitosan/Fe3O4@C composite for highly efficient adsorption of levofloxacin antibiotic. Chemical Engineering Communications, 210(7), 1073–1085. DOI: 10.1080/00986445.2022.2053680
  28. Al-Ghouti, M.A., Al-Absi, R.S. (2020). Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater. Scientific Reports, 10(1), 15928. DOI: 10.1038/s41598-020-72996-3
  29. Kapoor, R.T., Rafatullah, M., Siddiqui, M.R., Khan, M.A., Sillanpää, M. (2022). Removal of Reactive Black 5 Dye by Banana Peel Biochar and Evaluation of Its Phytotoxicity on Tomato. Sustainability, 14(7) DOI: 10.3390/su14074176
  30. Hasani, N., Selimi, T., Mele, A., Thaçi, V., Halili, J., Berisha, A., Sadiku, M. (2022). Theoretical, Equilibrium, Kinetics and Thermodynamic Investigations of Methylene Blue Adsorption onto Lignite Coal. Molecules, 27(6), 1856. DOI: 10.3390/molecules27061856

Last update:

No citation recorded.

Last update:

No citation recorded.