skip to main content

Effect of Ammonia, Urea, and Magnesium Modification on γ-Al2O3 Support in Enhancing the Catalytic Performance for Hydrodemetallization and Hydrodesulfurization

1Department of Chemical Enginering, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia

2Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia

3Pertamina Technology & Innovation, Jl. Raya Bekasi KM. 20 Pulogadung, East Jakarta, Indonesia

4 Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia

5 Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia

View all affiliations
Received: 25 Feb 2025; Revised: 19 Mar 2025; Accepted: 20 Mar 2025; Available online: 21 Mar 2025; Published: 30 Aug 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

This research investigates the modification of γ−Al₂O₃ using ammonia, urea, and magnesium acetate to enhance its catalytic properties for hydrodemetallization (HDM) and hydrodesulfurization (HDS). Structural modifications affected the mineral composition, crystal size distribution, and textural properties of the support, with boehmite crystal sizes consistently ranging from 7 to 10 nm. Textural analysis indicated that alumina supports modified with urea and ammonia demonstrated enhanced characteristics, including elevated specific surface area (SBET), pore volume (VT), and pore size distribution (d), which are essential for catalytic performance. The modified catalyst (HM) exhibited significant hydrodemetalation efficiency, attaining metal removal rates of 98% for iron, 71% for vanadium, and 99% for nickel. In the HDS reaction, HM demonstrated the highest sulfur conversion of 20.9% at 315 °C, due to its capacity to sustain active site availability. The primary cause of catalyst deactivation was metal deposition, which resulted in pore blockage and diminished efficiency. The findings underscore the importance of support modification in enhancing catalytic performance, indicating HM as a viable catalyst for future heavy oil refining applications. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Hydrodesulfurization (HDS); Hydrodemetallization (HDM); Fe (Iron) removal; Vanadium removal; Nickel removal
Funding: PT Pertamina Technology & Innovation (TI)

Article Metrics:

  1. Chehadeh, D., Ma, X., Bazzaz, H. Al (2023). Recent progress in hydrotreating kinetics and modeling of heavy oil and residue : A review. Fuel, 334(P1), 126404. DOI: 10.1016/j.fuel.2022.126404
  2. Ferreira, C., Guibard, I., Lemos, F. (2014). Hydrodesulfurization and hydrodemetallization of different origin vacuum residues : New modeling approach. Fuel, 129, 267–277. DOI: 10.1016/j.fuel.2014.03.056
  3. Nguyen, T., Nguyen, Q., Ngoc, A., Cao, T., Ernest, T., Binh, T., Pham, P.T.H., Nguyen, T.M. (2022). Hydrodemetallization of heavy oil : Recent progress , challenge , and future prospects. Journal of Petroleum Science and Engineering, 216, 110762. DOI: 10.1016/j.petrol.2022.110762
  4. Gab, M.A., Adel, A. (2021). Determination of iron , nickel , and vanadium in crude oil by inductively coupled plasma optical emission spectrometry following microwave ‑ assisted wet digestion. Chemical Papers, 75, 4239–4248. DOI: 10.1007/s11696-021-01633-8
  5. Pereira, J.S.F., Moraes, D.P., Antes, F.G., Diehl, L.O., Santos, M.F.P., Guimarães, R.C.L., Fonseca, T.C.O., Dressler, V.L., Flores, É.M.M. (2010). Determination of metals and metalloids in light and heavy crude oil by ICP-MS after digestion by microwave-induced combustion. Microchemical Journal, 96(1), 4–11. DOI: 10.1016/j.microc.2009.12.016
  6. Hensen, E.J.M., Poduval, D.G., Veen, J.A.R. Van (2007). Promotion of Thiophene Hydrodesulfurization by Ammonia over Amorphous-Silica - Alumina-Supported CoMo and NiMo Sulfides. Industrial & Engineering Chemistry Research, 46(12), 4202–4211. DOI: 10.1021/ie0611756
  7. Kim, J.H., Jung, K.Y., Park, K.Y. (2012). Journal of Industrial and Engineering Chemistry Effect of urea , NH 4 OH , and DCCA on texture properties of alumina prepared by ultrasonic spray pyrolysis. Journal of Industrial and Engineering Chemistry, 18(1), 344–348. DOI: 10.1016/j.jiec.2011.04.001
  8. Hamid Al-megren, Y.H., Haoyi Chen, Mohammed Alkinany Sergio Gonzalez-Cortes, Saud Aldrees, T.X. (2015). Effect of urea / metal ratio on the performance of NiMoP/Al2O3 catalyst for diesel deep HDS. Applied Petrochemical Research, 5, 173–180. DOI: 10.1007/s13203-015-0098-x
  9. Chen, L., Xu, Y., Wang, B., Yun, J., Dehghani, F., Xie, Y. (2021). Mg-modified CoMo/Al2O3 with enhanced catalytic activity for the hydrodesulfurization of 4 , 6-dimethyldibenzothiophene. Catalysis Communications, 155, 106316. DOI: 10.1016/j.catcom.2021.106316
  10. Chen, W., Nie, H., Li, D., Long, X., Gestel, J. Van, Maugé, F. (2016). Effect of Mg addition on the structure and performance of sulfide Mo/Al2O3 in HDS and HDN reaction. Journal of Catalysis, 344, 420–433. DOI: 10.1016/j.jcat.2016.08.025
  11. Liu, T., Ju, L., Zhou, Y., Wei, Q., Ding, S., Zhou, W., Luo, X., Jiang, S., Tao, X. (2015). Effect of pore size distribution (PSD) of Ni-Mo/Al2O3 catalysts on the Saudi Arabia vacuum residuum hydrodemetallization (HDM). Catalysis Today, 271, 179–187. DOI: 10.1016/j.cattod.2015.07.045
  12. Zhu, H., Mao, Z., Liu, B., Yang, T., Feng, X., Jin, H., Peng, C., Yang, C., Wang, J., Fang, X. (2021). Regulating catalyst morphology to boost the stability of Ni-Mo/Al2O3 catalyst for ebullated-bed residue hydrotreating. Green Energy and Environment, 6(2), 283–290. DOI: 10.1016/j.gee.2020.05.001
  13. Marques, J., Guillaume, D., Merdrignac, I., Espinat, D., Brunet, S. (2011). Effect of catalysts acidity on residues hydrotreatment. Applied Catalysis B : Environmental, 101(3–4), 727–737. DOI: 10.1016/j.apcatb.2010.11.015
  14. Ramli, Z., Saleh, R. (2008). Preparation of Ordered Mesoporous Alumina Particles via Simple Precipitation Method. Journal of Fundamental Sciences, 4(2), 435–443. DOI: 10.11113/mjfas.v4n2.52
  15. Qin, H., Tan, X., Huang, W., Jiang, J., Jiang, H. (2015). Application of urea precipitation method in preparation of advanced ceramic powders. Ceramics International, 41(9), 11598–11604. DOI: 10.1016/j.ceramint.2015.06.032
  16. Ameri, Elham, Abdollahifar, Mozaffar, Zamani, Mohammad Reza, Nekouei, H. (2016). The Role of Urea on The Hydrothermal Synthesis of Boehmite Nanoarchitectures. Ceramics-Silikaty, 60(3), 162–168. DOI: 10.13168/cs.2016.0025
  17. Yang, J., Frost, R.L. (2008). Synthesis and Characterization of Boehmite Nanofibers. Research Letters in Inorganic Chemistry, 2008(1), 1–4. DOI: 10.1155/2008/602198
  18. Souza, P. De, Carlos, A., Coelho, V., São, U. De, Usp, P., Prof, A., Gualberto, L., Sp, S.P., Sp, S.P. (2009). Hydrothermal Synthesis of Well-Crystallised Boehmite Crystals of Various Shapes. Materials Research, 12(4), 437–445. DOI: 10.1590/S1516-14392009000400012
  19. Stuart, N.M., Sohlberg, K. (2021). The Microstructure of γ -Alumina. Energies, 14(20), 1–16. DOI: 10.3390/en14206472
  20. Javad, M., Mehdi, F., Davood, E. (2017). Performance enhancement of quantum dot sensitized solar cells by treatment of ZnO nanorods by magnesium acetate. Journal of Materials Science: Materials in Electronics, 29, 4569–4574. DOI: 10.1007/s10854-017-8407-z
  21. Polu, A.R., Kumar, R. (2013). Ionic Conductivity and Discharge Characteristic Studies of PVA-Mg (CH3COO)2 Solid Polymer Electrolytes. International Journal of Polymeric Materials and Polymeric Biomaterials, 62(2), 76–80. DOI: 10.1080/00914037.2012.664211
  22. Nasiri, S., Rabiei, M., Palevicius, A., Janusas, G., Vilkauskas, A., Nutalapati, V., Monshi, A. (2023). Modified Scherrer equation to calculate crystal size by XRD with high accuracy , examples Fe2O3 , TiO2 and V2O5. Nano Trends, 3, 100015. DOI: 10.1016/j.nwnano.2023.100015
  23. Nurdini, N., Mualliful, M., Maryanti, E., Setiawan, P., Thomryes, G., Kadja, M. (2022). Thermally-induced color transformation of hematite : insight into the prehistoric natural pigment preparation. Heliyon, 8(8), e10377. DOI: 10.1016/j.heliyon.2022.e10377
  24. Gunawan, M.L., Muntaqin, A., Saraswati, M.A., Nurdini, N., Kadja, G.T.M., Rasrendra, C.B. (2024). Supreme efficacy : The ultrahigh performance of ZnO adsorbent for ambient-temperature H2S removal in integrated H2S–N2 gas. Case Studies in Chemical and Environmental Engineering, 9(10), 100615. DOI: 10.1016/j.cscee.2024.100615
  25. Rasrendra, C.B., Maulidanti, E.G., Darlismawantyani, S.E.P., Nurdini, N., Rustyawan, W., Kadja, G.T.M. (2023). Bifunctional NiMo/HY-γ-Al2O3 catalysts for an effective production of ultra-low sulfur diesel. Case Studies in Chemical and Environmental Engineering, 8, 100427. DOI: 10.1016/j.cscee.2023.100427
  26. Goede, S. De, Wilken, C., Ajam, M., Roets, P., Engelbrecht, P., Woolard, C. (2015). A Comparison of the Stability Performance of Blends of Paraffinic Diesel and Petroleum-Derived Diesel , with RME Biodiesel Using Laboratory Stability Measurement Techniques. Journal of Fuels, 2015, 528497. DOI: 10.1155/2015/528497
  27. Alatrsh, S., Ilter, S. (2022). Performance Review of C18 Paraffin Phase Changing Building Materials in Different Climate Zones. International Journal of Civil Engineering, 9(8), 22–28. DOI: 10.14445/23488352/IJCE-V9I8P104
  28. Chang, J., Liu, J., Li, D. (1998). Kinetics of resid hydrotreating reactions. Catalysis Today, 43(3–4), 233–239. DOI: 10.1016/S0920-5861(98)00152-7
  29. Erika, D., Nurdini, N., Mulyani, I., Kadja, G.T.M. (2023). Amine-functionalized ZSM-5-supported gold nanoparticles as a highly efficient catalyst for the reduction of p -Nitrophenol. Inorganic Chemistry Communications, 147(10), 110253. DOI: 10.1016/j.inoche.2022.110253
  30. Pal, N., Verma, V., Khan, A., Mishra, A., Anand, M. (2022). Hydrotreating and hydrodemetalation of raw jatropha oil using mesoporous Ni-Mo/γ-Al2O3 catalyst. Fuel, 326, 125108. DOI: 10.1016/j.fuel.2022.125108
  31. Ghassabzaadeh, H., Niaei, A., Rashidzadeh, M. (2020). Synthesis and Characterization of Multi-Modal γ-Al2O3: A Systematic Investigation on the Optimization of Hydrodemetallization Catalyst Preparation. Chemistry Select, 5(29), 8892–8905. DOI: 10.1002/slct.202001252
  32. Garcia-montoto, V., Verdierc, S., Maroun, Z., Egeberg, R., Tiedje, J.L. (2020). Understanding the removal of V , Ni and S in crude oil atmospheric residue hydrodemetallization and hydrodesulfurization. Fuel Processing Technology, 201, 106341. DOI: 10.1016/j.fuproc.2020.106341
  33. Li, G., Lu, X., Tang, Z., Liu, Y., Li, X., Liu, C. (2013). Preparation of NiMo/g-Al2O3 catalysts with large pore size for vacuum residue hydrotreatment. Materials Research Bulletin, 48(11), 4526–4530. DOI: 10.1016/j.materresbull.2013.07.041
  34. Gualda, G., Kasztelan, S. (1996). Initial Deactivation of Residue Hydrodemetallization Catalysts. Journal of Catalysis, 161(1), 319–337. DOI: 10.1006/jcat.1996.0190

Last update:

No citation recorded.

Last update:

No citation recorded.