skip to main content

One-pot Synthesis of MXene-derived Fe-N-C as Oxygen Reduction Reaction Catalyst in Acidic Medium

1Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

2Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor, Malaysia

3Department of Engineering, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia

Received: 9 Nov 2024; Revised: 12 Mar 2025; Accepted: 13 Mar 2025; Available online: 14 Mar 2025; Published: 30 Aug 2025.
Editor(s): Bunjerd Jongsomjit
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Fe-N-C is a good candidate as the alternative to the expensive Pt/C catalyst for oxygen reduction reaction (ORR). However, their catalytic activity and durability are still inferior to the Pt/C catalyst. Recently, MXene has emerged as a promising material as the catalyst support for the ORR application due to its good conductivity and mechanical properties. In this work, the MXene-supported Fe-N-C catalyst was synthesized using the one-pot pyrolysis method, in which the MXene was directly added during the preparation of Fe-N-C at various pyrolysis temperatures and mass ratios of Fe salt. The works showed that the one-pot synthesis of Fe-N-C/MXene is ORR active, and has shown improved current density over Fe-N-C with the optimum pyrolysis temperature of 900 °C and mass ratio of 1:1. In addition, the Fe-N-C/MXene also demonstrated superior durability compared to Pt/C.

Article Metrics:

  1. Chai, L., Hu, Z., Wang, X., Zhang, L., Li, T.-T., Hu, Y., Pan, J., Qian, J., Huang, S. (2021). Fe7C3 nanoparticles with in situ grown CNT on nitrogen doped hollow carbon cube with greatly enhanced conductivity and ORR performance for alkaline fuel cell. Carbon. 174, 531-539. DOI: 10.1016/j.carbon.2020.12.070
  2. Huang, Y., Liu, K., Kan, S., Liu, P., Hao, R., Liu, W., Wu, Y., Liu, H., Liu, M., Liu, K. (2021). Highly Dispersed Fe-Nx Active Sites on Graphitic-N Dominated Porous Carbon for Synergetic Catalysis of Oxygen Reduction Reaction. Carbon. 171, 1-9. DOI: 10.1016/j.carbon.2020.09.010
  3. Jafari, M., Gharibi, H., Parnian, M.J., Nasrollahpour, M., Vafaee, M. (2021). Iron-Nanoparticle-Loaded Nitrogen-Doped Carbon Nanotube/Carbon Sheet Composites Derived from MOF as Electrocatalysts for an Oxygen Reduction Reaction. ACS Applied Nano Materials. 4 (1), 459-477. DOI: 10.1021/acsanm.0c02774
  4. Dong, Y., Shi, H., Wu, Z.-S. (2020). Recent Advances and Promise of MXene-Based Nanostructures for High-Performance Metal Ion Batteries. Advanced Functional Materials. 30 (47), 2000706. DOI: 10.1002/adfm.202000706
  5. Sohan, A., Banoth, P., Aleksandrova, M., Nirmala Grace, A., Kollu, P. (2021). Review on MXene synthesis, properties, and recent research exploring electrode architecture for supercapacitor applications. International Journal of Energy Research. 45 (14), 19746-19771. DOI: 10.1002/er.7068
  6. Pei, Y., Zhang, X., Hui, Z., Zhou, J., Huang, X., Sun, G., Huang, W. (2021). Ti3C2TX MXene for Sensing Applications: Recent Progress, Design Principles, and Future Perspectives. ACS Nano. 15 (3), 3996-4017. DOI: 10.1021/acsnano.1c00248
  7. Ahmad Junaidi, N.H., Wong, W.Y., Loh, K.S., Rahman, S., Daud, W.R.W. (2021). A Comprehensive Review of Mxenes as Catalyst Supports for the Oxygen Reduction Reaction in Fuel Cells. International Journal of Energy Research. 45 (11), 15760-15782. DOI: 10.1002/er.6899
  8. Sinniah, J.D., Wong, W.Y., Loh, K.S., Yunus, R.M., Timmiati, S.N. (2022). Perspectives on Carbon-Alternative Materials as Pt Catalyst Supports for a Durable Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. Journal of Power Sources. 534, 231422. DOI: 10.1016/j.jpowsour.2022.231422
  9. Shen, M., Jiang, W., Liang, K., Zhao, S., Tang, R., Zhang, L., Wang, J.Q. (2021). One‐pot green process to synthesize MXene with controllable surface terminations using molten salts. Angewandte Chemie. 133 (52), 27219-27224. DOI: 10.1002/ange.202110640
  10. Pang, S.-Y., Wong, Y.-T., Yuan, S., Liu, Y., Tsang, M.-K., Yang, Z., Huang, H., Wong, W.-T., Hao, J. (2019). Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. Journal of the American Chemical Society. 141 (24), 9610-9616. DOI: 10.1021/jacs.9b02578
  11. Peng, R., Zhao, Z., Sun, H., Yang, Y., Song, T., Yang, Y., Shao, J., Jin, H., Sun, H., Zhao, Z. (2023). The Active Sites and Corresponding Stability Challenges of the M-N-C Catalysts for Proton Exchange Membrane Fuel Cell. Chinese Journal of Chemistry. 41 (6), 710-724. DOI: 10.1002/cjoc.202200661
  12. Jiang, L., Duan, J., Zhu, J., Chen, S., Antonietti, M. (2020). Iron-Cluster-Directed Synthesis of 2D/2D Fe-N-C/MXene Superlattice-like Heterostructure with Enhanced Oxygen Reduction Electrocatalysis. ACS Nano. 14 (2), 2436-2444. DOI: 10.1021/acsnano.9b09912
  13. Wen, Y., Ma, C., Wei, Z., Zhu, X., Li, Z. (2019). FeNC/MXene hybrid nanosheet as an efficient electrocatalyst for oxygen reduction reaction. RSC Advances. 9 (24), 13424-13430. DOI: 10.1039/C9RA01330J
  14. Cao, F., Zhang, Y., Wang, H., Khan, K., Tareen, A.K., Qian, W., Zhang, H., Ågren, H. (2022). Recent advances in oxidation stable chemistry of 2D MXenes. Advanced Materials. 34 (13), 2107554. DOI: 10.1002/adma.202107554
  15. Ahmad Junaidi, N.H., Wong, W.Y., Loh, K.S., Rahman, S., Choo, T.F., Wu, B. (2023). Enhanced oxygen reduction reaction catalyst stability and durability of MXene-supported Fe-N-C catalyst for proton exchange membrane fuel cell application. Journal of Alloys and Compounds. 968 171898. DOI: 10.1016/j.jallcom.2023.171898
  16. Zhang, H., Chung, H.T., Cullen, D.A., Wagner, S., Kramm, U.I., More, K.L., Zelenay, P., Wu, G. (2019). High-performance Fuel Cell Cathodes Exclusively Containing Atomically Dispersed Iron Active Sites. Energy & Environmental Science. 12 (8), 2548-2558. DOI: 10.1039/C9EE00877B
  17. Wang, W.-T., Batool, N., Zhang, T.-H., Liu, J., Han, X.-F., Tian, J.-H., Yang, R. (2021). When MOFs meet MXenes: superior ORR performance in both alkaline and acidic solutions. Journal of Materials Chemistry A. 9 (7), 3952-3960. DOI: 10.1039/D0TA10811A
  18. Ao, X., Ding, Y., Nam, G., Soule, L., Jing, P., Zhao, B., Hwang, J.Y., Jang, J.-H., Wang, C., Liu, M. (2022). A Single-Atom Fe-N-C Catalyst with Ultrahigh Utilization of Active Sites for Efficient Oxygen Reduction. Small. 18 (30), 2203326. DOI: 10.1002/smll.202203326
  19. Seredych, M., Shuck, C.E., Pinto, D., Alhabeb, M., Precetti, E., Deysher, G., Anasori, B., Kurra, N., Gogotsi, Y. (2019). High-Temperature Behavior and Surface Chemistry of Carbide MXenes Studied by Thermal Analysis. Chemistry of Materials. 31 (9), 3324-3332. DOI: 10.1021/acs.chemmater.9b00397
  20. Zhang, H., Hwang, S., Wang, M., Feng, Z., Karakalos, S., Luo, L., Qiao, Z., Xie, X., Wang, C., Su, D., Shao, Y., Wu, G. (2017). Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation. Journal of the American Chemical Society. 139 (40), 14143-14149. DOI: 10.1021/jacs.7b06514
  21. El-Desoky, M.M., Morad, I., Wasfy, M.H., Mansour, A.F. (2020). Synthesis, Structural and Electrical Properties of PVA/TiO2 Nanocomposite Films with Different TiO2 Phases Prepared by Sol–Gel Technique. Journal of Materials Science: Materials in Electronics. 31 (20), 17574-17584. DOI: 10.1007/s10854-020-04313-7
  22. Moridon, S.N., Arifin, K., Mohamed, M.A., Minggu, L.J., Mohamad Yunus, R., Kassim, M.B. (2023). TiO2 Nanotubes Decorated with Mo2C for Enhanced Photoelectrochemical Water-Splitting Properties. Materials. 16 (18), DOI: 10.3390/ma16186261
  23. Han, M., Yin, X., Wu, H., Hou, Z., Song, C., Li, X., Zhang, L., Cheng, L. (2016). Ti3C2 MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band. ACS Applied Materials & Interfaces. 8 (32), 21011-21019. DOI: 10.1021/acsami.6b06455
  24. Xu, W., Li, S., Hu, S., Yu, W., Zhou, Y. (2021). Effect of Heat Treatment on Microwave Absorption Properties of Ti3C2Tx. Journal of Materials Science: Materials in Electronics. 32 (13), 17953-17965. DOI: 10.1007/s10854-021-06334-2
  25. Ji, B., Fan, S., Ma, X., Hu, K., Wang, L., Luan, C., Deng, J., Cheng, L., Zhang, L. (2020). Electromagnetic Shielding Behavior of Heat-Treated Ti3C2TX MXene Accompanied by Structural and Phase Changes. Carbon. 165 150-162. DOI: 10.1016/j.carbon.2020.04.041
  26. Yu, J., Jiang, Z., Huang, T., Tang, C. (2023). BN/Cu/CNT Nanoparticles as an Efficient Tri-Functional Electrocatalyst for ORR and OER. International Journal of Hydrogen Energy. 48, 53, 20368-20377. DOI: 10.1016/j.ijhydene.2023.03.015
  27. Wassner, M., Eckardt, M., Reyer, A., Diemant, T., Elsaesser, M.S., Behm, R.J., Hüsing, N. (2020). Synthesis of amorphous and graphitized porous nitrogen-doped carbon spheres as oxygen reduction reaction catalysts. Beilstein Journal of Nanotechnology. 11 (1), 1-15. DOI: 10.3762/bjnano.11.1
  28. Ahmad Junaidi, N.H., Tan, S.Y., Wong, W.Y., Loh, K.S., Saidur, R., Choo, T.F., Wu, B. (2023). Influence of Fe–N–C morphologies on the oxygen reduction reaction in acidic and alkaline media. Asia-Pacific Journal of Chemical Engineering. 18 (6), e2950. DOI: 10.1002/apj.2950
  29. Gu, W., Wu, M., Xu, J., Zhao, T. (2022). MXene boosted metal-organic framework-derived Fe–N–C as an efficient electrocatalyst for oxygen reduction reactions. International Journal of Hydrogen Energy. 47 (39), 17224-17232. DOI: 10.1016/j.ijhydene.2022.03.229
  30. Li, Z., Liang, X., Gao, Q., Zhang, H., Xiao, H., Xu, P., Zhang, T., Liu, Z. (2019). Fe, N co-doped carbonaceous hollow spheres with self-grown carbon nanotubes as a high performance binary electrocatalyst. Carbon. 154 466-477. DOI: 10.1016/j.carbon.2019.08.036

Last update:

No citation recorded.

Last update:

No citation recorded.