skip to main content

S-scheme g-C3N4/PVA Heterojunction with Enhanced Photocatalytic Reduction of Aqueous Cr(VI) and Mechanism

1Metrology & Test, Shandong Special Equipment Inspection and Testing Group,25000, Jinan, Shandong, China

2School of Materials and Chemical Engineering, Xuzhou University of Technology, 221018, Xuzhou, China

3School of Chemistry and Environmental Science, Yili Normal University, 835000, Yining, China

4 School of Materials and Chemical Engineering, Xuzhou University of Technology, No.2, Lishui Road, Yunlong District, Xuzhou, 221018, China

View all affiliations
Received: 9 Feb 2025; Revised: 25 Mar 2025; Accepted: 26 Mar 2025; Available online: 27 Mar 2025; Published: 30 Aug 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Bulk g-C3N4 was synthesized using melamine as a precursor through thermal polymerization followed by high-temperature quenching. Subsequently, a g-C3N4/PVA heterojunction featuring evenly dispersed PVA on its surface was fabricated via in-situ hydrothermal synthesis. The impact of hydrothermal temperature and PVA concentration on the light absorption, bandgap energy, specific surface area, and charge carrier transport characteristics of g-C3N4/PVA were explored. Experimental findings indicate that PVA modification reduces nitrogen-vacancy defects in the g-C3N4/PVA heterojunction, thereby enhancing its visible-light photocatalytic activity compared to bulk g-C3N4. Specifically, g-C3N4/PVA-3 exhibits a 2.93-fold higher reaction rate for Cr(VI) photocatalytic reduction under visible light (0.017 min1) than bulk g-C3N4 (0.0058 min1), with a TOF of 0.0079 h1. Electrochemical tests confirm that the enhanced activity arises from improved light-induced charge transfer and separation efficiency. Based on Mott-Schottky analysis and the identification of •OH and •O2 as reactive species, a mechanism for Cr(VI) reduction by S-scheme g-C3N4/PVA heterojunctions is proposed. This study presents an economically viable and efficient method for developing high-performance conjugated polymer-modified photocatalysts. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Graphitic carbon nitride; Polyvinyl alcohol; Photogenerated carriers; S-scheme heterojunction; hexavalent chrome
Funding: Xuzhou University of Technology under contract Innovation and Entrepreneurship Projects for College Students (xcx2024002)

Article Metrics:

  1. Sun, Y., Szulejko, J. E., Kim, K. H., Kumar, V., Li, X. (2023). Recent advances in the development of bismuth-based materials for the photocatalytic reduction of hexavalent chromium in water. Chinese Journal of Catalysis, 55, 20-43.(1). DOI: 10.1016/s1872-2067(23)64553-x
  2. Hasija, V., Raizada, P., Singh, P., Verma, N., Khan, A. A. P., Singh, A., Selvasembian, R., Kim, S. Y., Hussain, C.M., Nguyen, V., Van Le, Q. (2021). Progress on the photocatalytic reduction of hexavalent Cr (VI) using engineered graphitic carbon nitride. Process Safety and Environmental Protection, 152, 663-678. (2)DOI: 10.1016/j.psep.2021.06.042
  3. Yan, W., Chen, Q., Meng, X., Wang, B. (2017). Multicycle photocatalytic reduction of Cr (VI) over transparent PVA/TiO2 nanocomposite films under visible light. Science China Materials, 5(60), 449-460. DOI: 10.1007/s40843-017-9024-9
  4. Zhao, X., Xu, M., Song, X., Zhou, W., Liu, X., Huo, P. (2022). 3D Fe-MOF embedded into 2D thin layer carbon nitride to construct 3D/2D S-scheme heterojunction for enhanced photoreduction of CO2. Chinese Journal of Catalysis, 43(10), 2625-2636. DOI: 10.1016/s1872-2067(22)64115-9
  5. Balu, S., Chen, Y. L., Juang, R. C., Yang, T. C. K., Juan, J. C. (2020). Morphology-controlled synthesis of α–Fe2O3 nanocrystals impregnated on g-C3N4–SO3H with ultrafast charge separation for photoreduction of Cr (VI) under visible light. Environmental Pollution, 267, 115491. DOI: 10.1016/j.envpol.2020.115491
  6. Dou, K., Peng, C., Wang, R., Cao, H., Yao, C., Qiu, J.,Liu, J., Tsidaeva, N., Wang, W. (2023). S-scheme tubular g-C3N4/BiOI heterojunctions for boosting photodegradation of tetracycline and Cr (VI): Mechanism insight, degradation pathway and DFT calculation. Chemical Engineering Journal, 455, 140813. DOI: 10.1016/j.cej.2022.140813
  7. Zhang, H., Yang, J., Guo, L., Wang, R., Peng, S., Wang, J., Wang, W., Xu, J. (2021). Microwave-aided synthesis of BiOI/g-C3N4 composites and their enhanced catalytic activities for Cr (VI) removal. Chemical Physics Letters, 762, 138143. DOI: 10.1016/j.cplett.2020.138143
  8. Uma, K., Pawar, S. (2023). TiO2/g-C3N4 composites for the removal of chromium in wastewater. Results in Chemistry, 5, 100743. DOI: 10.1016/j.rechem.2022.100743
  9. Dai, Z., Zhen, Y., Sun, Y., Li, L., Ding, D. (2021). ZnFe2O4/g-C3N4 S-scheme photocatalyst with enhanced adsorption and photocatalytic activity for uranium (VI) removal. Chemical Engineering Journal, 415, 129002. DOI: 10.1016/j.cej.2021.129002
  10. Zhang, X., Zhao, Y., Li, J., Wang, Q., Yin, Y., Zhao, X. (2024). Enhanced photocatalytic activity in Pr3+-doped Bi2WO6 through Nd3+ co-doping. Functional Materials Letters, 17(3), 2451013. DOI: 10.1142/s1793604724510135
  11. Yu, Y., Chen, D., Xu, W., Fang, J., Sun, J., Liu, Z., Chen, Y., Liang, Y., Fang, Z. (2021). Synergistic adsorption-photocatalytic degradation of different antibiotics in seawater by a porous g-C3N4/calcined-LDH and its application in synthetic mariculture wastewater. Journal of hazardous materials, 416, 126183. DOI: 10.1016/j.jhazmat.2021.126183
  12. Ma, B., Zha, Y., Yu, P., Chen, G., Guo, Y., Lan, Y., Li, J., Xia, W., Zhao, B. (2023). Hydrothermal nanoarchitectonics of Z-scheme g-C3N4/Bi2WO6 heterojunction with enhanced adsorption and photocatalytic activity for fluoroquinolone antibiotics removal: kinetics, mechanism and degradation pathway. Journal of Alloys and Compounds, 952, 170061. DOI: 10.1016/j.jallcom.2023.170061.
  13. Wang, L., Yang, T., Peng, L., Zhang, Q., She, X., Tang, H., Liu, Q. (2022). Dual transfer channels of photo-carriers in 2D/2D/2D sandwich-like ZnIn2S4/g-C3N4/Ti3C2 MXene S-scheme/Schottky heterojunction for boosting photocatalytic H2 evolution. Chinese Journal of Catalysis, 43(10), 2720-2731. DOI: 10.1016/s1872-2067(22)64133-0
  14. Fang, J., Xie, K., Kang, Q., Gou, Y. (2022). Facile fabrication of g-C3N4/CdS heterojunctions with enhanced visible-light photocatalytic degradation performances. Journal of Science: Advanced Materials and Devices, 7(1), 100409. DOI: 10.1016/j.jsamd.2021.100409
  15. Ma, Y., Jia, Y. L., Lin, Y. H., Shi, W. B. (2021). Hierarchical Brookite TiO2–Bi2MoO6 Nanospheres with Efficient Visible-Light-Driven Photocatalytic Response. Journal of Nanoscience and Nanotechnology, 21(10), 5370-5377. DOI: 10.1166/jnn.2021.19344
  16. Yi, F., Ma, J., Lin, C., Wang, L., Zhang, H., Qian, Y., Zhang, K. (2020). Insights into the enhanced adsorption/photocatalysis mechanism of a Bi4O5Br2/g-C3N4 nanosheet. Journal of Alloys and Compounds, 821, 153557. DOI: 10.1016/j.jallcom.2019.153557
  17. Liu, C., Dai, H., Tan, C., Pan, Q., Hu, F., Peng, X. (2022). Photo-Fenton degradation of tetracycline over Z-scheme Fe-g-C3N4/Bi2WO6 heterojunctions: Mechanism insight, degradation pathways and DFT calculation. Applied Catalysis B: Environmental, 310, 121326. DOI: 10.1016/j.apcatb.2022.121326
  18. Yin, Z., Tian, Y., Gao, P., Feng, L., Liu, Y., Du, Z., Zhang, L. (2020). Photodegradation mechanism and genetic toxicity of bezafibrate by Pd/g-C3N4 catalysts under simulated solar light irradiation: The role of active species. Chemical Engineering Journal, 379, 122294. DOI: 10.1016/j.cej.2019.122294
  19. Liu, Y., Yin, W., Lin, Q., Li, Z., Zhong, W., Fang, B. (2023). Nitrogen vacancies-engineered graphitic carbon nitride nanosheets for boosting photocatalytic H2 production. Applied Surface Science, 640, 158386. DOI: 10.1016/j.apsusc.2023.158386
  20. Li, J., Li, K., Du, J., Yang, H., Song, C., Guo, X. (2022). Impact of transition metal incorporation on the photocatalytic CO2 reduction activity of polymeric carbon nitride. Journal of CO2 Utilization, 64, 102162. DOI: 10.1016/j.jcou.2022.102162
  21. Praus, P. (2023). Photocatalytic nitrogen fixation using graphitic carbon nitride: A review. ChemistrySelect, 8(1), e202204511. DOI: 10.1002/slct.202204511
  22. Mazzanti, S., Markushyna, Y., Savateev, O. (2023). Photocatalytic C− H Amination of Electron‐rich Aromatic Hydrocarbons by Carbon Nitride Photocatalysis. ChemCatChem, 15(5), e202201388. DOI: 10.1002/cctc.202201388
  23. Zuo, M., Li, X., Liang, Y., Zhao, F., Sun, H., Liu, C., Gong, X., Qin, P., Wang, H., Wu, Z., Luo, L. (2023). Modification of sulfur doped carbon nitride and its application in photocatalysis. Separation and Purification Technology, 308, 122875. DOI: 10.1016/j.seppur.2022.122875
  24. Zhang, Q., Liu, S., Zhang, Y., Zhu, A., Li, J., Du, X. (2016). Enhancement of the photocatalytic activity of g-C3N4 via treatment in dilute NaOH aqueous solution. Materials Letters, 171, 79-82. DOI: 10.1016/j.matlet.2016.02.043
  25. Sun, M., Wang, Y., Huang, A., Tian, Y., Yang, R., Wang, H., Zhao, X., Song, X. (2023). Naturally flavonoid-derived PVA nanofibers for antioxidation. New Journal of Chemistry, 47(29), 14046-14055. DOI: 10.1039/d3nj01990j
  26. Liu, S., Gao, X., Fan, H., Zhang, M., Waterhouse, G. I., Zhu, S. (2023). Green and recyclable graphitic carbon nitride/chitosan/polyvinyl alcohol photocatalytic films with efficient antibacterial activity for fruit packaging. International Journal of Biological Macromolecules, 236, 123974. DOI: 10.1016/j.ijbiomac.2023.123974
  27. Wang, K., Chen, P., Nie, W., Xu, Y., Zhou, Y. (2019). Improved photocatalytic reduction of Cr (VI) by molybdenum disulfide modified with conjugated polyvinyl alcohol. Chemical Engineering Journal, 359, 1205-1214. DOI: 10.1016/j.cej.2018.11.057
  28. Gao, X., Ai, L., Wang, L., Ju, Y., Liu, S., Wang, J., Fan, H. (2022). The stable and elastic graphitic carbon nitride/polyvinyl alcohol photocatalytic composite sponge: Simple synthesis and application for wastewater treatment. Journal of Environmental Chemical Engineering, 10(3), 107814. DOI: 10.1016/j.jece.2022.107814
  29. Chen, C., Liao, F., Zhang, X., Cheng, S., Deng, Y., Chen, C., Long, M. (2024). Polyvinyl alcohol as solid proton donor to modify g-C3N4 via hydrogen bonding enabling efficient photocatalytic H2O2 production from H2O and O2. RSC advances, 14(18), 12407-12415. DOI: 10.1039/d4ra01746c
  30. Adorna Jr, J., Annadurai, T., Bui, T. A. N., Tran, H. L., Lin, L. Y., Doong, R. A. (2021). Indirect Z-scheme nitrogen-doped carbon dot decorated Bi2MoO6/g-C3N4 photocatalyst for enhanced visible-light-driven degradation of ciprofloxacin. Chemical Engineering Journal, 422, 130103. DOI: 10.1016/j.cej.2021.130103
  31. Du, Z., Liu, F., Ding, G., Dan, Y., Jiang, L. (2021). Effective degradation of tetracycline via polyvinyl alcohol/Bi2WO6 hybrid hydrogel with easy separation. Materials Chemistry and Physics, 262, 124239. DOI: 10.1016/j.matchemphys.2021.124239
  32. Kumar, V. D., Kumari, S., Balaji, K. R., Khan, A. A., Ravikumar, C. R., Basavaraja, B. M.,Santosh, M. S., Rtimi, S. (2023). Singlet oxygen driven enhanced photocatalytic degradation of 1, 3, 7-trimethylpurine-2, 6-dione using surfactant mediated PVA-CuO nanocomposites: Combining physical adsorption and photocatalysis. Chemical Engineering Journal, 462, 142187. DOI: 10.1016/j.cej.2023.142187
  33. Hosseini, S. F., Dorraji, M. S. S., Rasoulifard, M. H. (2023). Boosting photo-charge transfer in 3D/2D TiO2@ Ti3C2 MXene/Bi2S3 Schottky/Z-scheme heterojunction for photocatalytic antibiotic degradation and H2 evolution. Composites Part B: Engineering, 262, 110820. DOI: 10.1016/j.compositesb.2023.110820
  34. Hosseini, A., Faghihian, H., Sanati, A. M. (2018). Elimination of dibenzothiophene from transportation fuel by combined photocatalytic and adsorptive method. Materials Science in Semiconductor Processing, 87, 110-118. DOI: 10.1016/j.mssp.2018.07.017
  35. Jamaluddin, N. S., Alias, N. H., Samitsu, S., Othman, N. H., Jaafar, J., Marpani, F., Lau, W. J., Tan, Y. Z. (2022). Efficient chromium (VI) removal from wastewater by adsorption-assisted photocatalysis using MXene. Journal of Environmental Chemical Engineering, 10(6), 108665. DOI: 10.1016/j.jece.2022.108665
  36. Hashem, E. M., Hamza, M. A., El-Shazly, A. N., Abd El-Rahman, S. A., El-Tanany, E. M., Mohamed, R. T., Allam, N. K. (2021). Novel Z-Scheme/Type-II CdS@ ZnO/g-C3N4 ternary nanocomposites for the durable photodegradation of organics: Kinetic and mechanistic insights. Chemosphere, 277, 128730. DOI: 10.1016/j.chemosphere.2020.128730
  37. Bai, Y., Mao, W., Wu, Y., Gao, Y., Wang, T., Liu, S. (2021). Synthesis of novel ternary heterojunctions via Bi2WO6 coupling with CuS and g-C3N4 for the highly efficient visible-light photodegradation of ciprofloxacin in wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 610, 125481. DOI: 10.1016/j.colsurfa.2020.125481
  38. Paramanik, L., Subudhi, S., Parida, K. M. (2022). Visible light active titanate perovskites: An overview on its synthesis, characterization and photocatalytic applications. Materials Research Bulletin, 155, 111965. DOI: 10.1016/j.materresbull.2022.111965

Last update:

No citation recorded.

Last update:

No citation recorded.