Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Jl Raya ITS, 60111, Surabaya, Indonesia
BibTex Citation Data :
@article{BCREC20337, author = {Raden Darmawan and Sri Rachmania Juliastuti and Bagas Hardiatmoko and Aulia Defriana and Fitria Nur Laily}, title = {Silica Synthesis from Mount Semeru Volcanic Ash as a Nickel Heavy Metal Adsorbent}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {20}, number = {2}, year = {2025}, keywords = {adsorbent; characterization; Mount Semeru; silica; sol-gel; volcanic ash}, abstract = { This study aims to synthesize SiO 2 gel-based adsorbents using the sol-gel method from Mount Semeru volcanic ash through varying concentrations of sodium hydroxide and acid catalysts and to determine its adsorption capacity on nickel (Ni(II)). Volcanic ash was obtained from Lumajang District, East Java, Indonesia. The silica gel adsorbent was made using the sol-gel method with different amounts of NaOH (1.0 M, 2.0 M, 3.0 M, and 4.0 M) and acid catalysts (acetic and hydrochloric acid). First, silica (SiO 2 ) was extracted from the volcanic ash, and then the sol-gel process was used to manufacture SiO2 gel-based adsorbents. The SiO 2 gel was analyzed using X-ray Fluorescence Analysis, Fourier-transform Infrared (FTIR), and Brunauer Emmett, and Teller (BET). Adsorption analysis of the Ni(II) metal ion content was conducted at various stirring rates and adsorbent dose masses. The results obtained showed that the most optimal SiO 2 gel was achieved when using 3.0 M NaOH, 10.53% HCl, and 8.30% CH 3 COOH. Through FTIR analysis, NaOH 3.0 M x HCl silica contains only the siloxane groups, whereas NaOH 3.0 M x CH 3 COOH silica contains both the silanol and siloxane groups. The best results were gained with SiO 2 -based adsorbents (NaOH 3.0 M x CH 3 COOH) at a dose of 10 g/L and a stirring rate of 50 rpm, with Ni(II) adsorption effectiveness of 99.80%. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {1978-2993}, pages = {280--292} doi = {10.9767/bcrec.20337}, url = {https://journal.bcrec.id/index.php/bcrec/article/view/20337} }
Refworks Citation Data :
This study aims to synthesize SiO2 gel-based adsorbents using the sol-gel method from Mount Semeru volcanic ash through varying concentrations of sodium hydroxide and acid catalysts and to determine its adsorption capacity on nickel (Ni(II)). Volcanic ash was obtained from Lumajang District, East Java, Indonesia. The silica gel adsorbent was made using the sol-gel method with different amounts of NaOH (1.0 M, 2.0 M, 3.0 M, and 4.0 M) and acid catalysts (acetic and hydrochloric acid). First, silica (SiO2) was extracted from the volcanic ash, and then the sol-gel process was used to manufacture SiO2 gel-based adsorbents. The SiO2 gel was analyzed using X-ray Fluorescence Analysis, Fourier-transform Infrared (FTIR), and Brunauer Emmett, and Teller (BET). Adsorption analysis of the Ni(II) metal ion content was conducted at various stirring rates and adsorbent dose masses. The results obtained showed that the most optimal SiO2 gel was achieved when using 3.0 M NaOH, 10.53% HCl, and 8.30% CH3COOH. Through FTIR analysis, NaOH 3.0 M x HCl silica contains only the siloxane groups, whereas NaOH 3.0 M x CH3COOH silica contains both the silanol and siloxane groups. The best results were gained with SiO2-based adsorbents (NaOH 3.0 M x CH3COOH) at a dose of 10 g/L and a stirring rate of 50 rpm, with Ni(II) adsorption effectiveness of 99.80%. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group. This agreement deals with the transfer or license of the copyright of publishing to Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group, while Authors still retain significant rights to use and share their own published articles. Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal (Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2024]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id ; bcrec[at]che.undip.ac.id
(This policy statements has been updated at 24th January 2024)