skip to main content

Silica Synthesis from Mount Semeru Volcanic Ash as a Nickel Heavy Metal Adsorbent

Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Jl Raya ITS, 60111, Surabaya, Indonesia

Received: 6 Jan 2025; Revised: 26 Mar 2025; Accepted: 29 Mar 2025; Available online: 3 Apr 2025; Published: 30 Aug 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

This study aims to synthesize SiO2 gel-based adsorbents using the sol-gel method from Mount Semeru volcanic ash through varying concentrations of sodium hydroxide and acid catalysts and to determine its adsorption capacity on nickel (Ni(II)). Volcanic ash was obtained from Lumajang District, East Java, Indonesia. The silica gel adsorbent was made using the sol-gel method with different amounts of NaOH (1.0 M, 2.0 M, 3.0 M, and 4.0 M) and acid catalysts (acetic and hydrochloric acid). First, silica (SiO2) was extracted from the volcanic ash, and then the sol-gel process was used to manufacture SiO2 gel-based adsorbents. The SiO2 gel was analyzed using X-ray Fluorescence Analysis, Fourier-transform Infrared (FTIR), and Brunauer Emmett, and Teller (BET). Adsorption analysis of the Ni(II) metal ion content was conducted at various stirring rates and adsorbent dose masses. The results obtained showed that the most optimal SiO2 gel was achieved when using 3.0 M NaOH, 10.53% HCl, and 8.30% CH3COOH. Through FTIR analysis, NaOH 3.0 M x HCl silica contains only the siloxane groups, whereas NaOH 3.0 M x CH3COOH silica contains both the silanol and siloxane groups. The best results were gained with SiO2-based adsorbents (NaOH 3.0 M x CH3COOH) at a dose of 10 g/L and a stirring rate of 50 rpm, with Ni(II) adsorption effectiveness of 99.80%. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: adsorbent; characterization; Mount Semeru; silica; sol-gel; volcanic ash
Funding: Institut Teknologi Sepuluh Nopember under contract 1008/PKS/ITS/2024

Article Metrics:

  1. Aigbe, U.O., Ukhurebor, K.E., Onyancha, R.B., Osibote, O.A., Darmokoesoemo, H., Kusuma, H.S. (2021). Fly ash-based adsorbent for adsorption of heavy metals and dyes from aqueous solution: a review. Journal of Materials Research and Technology, 14, 2751-2774. DOI: 10.1016/j.jmrt.2021.07.140
  2. Ali, A., Chiang, Y.W., Santos, R.M. (2022). X-ray diffraction techniques for mineral characterization: A review for engineers of the fundamentals, applications, and research directions. Minerals, 12(2), 205. DOI: 10.3390/min12020205
  3. Realita, A., Fahmi, M.N., Prastowo, T. (2022). Madlazim. Detection of Lahar Flow Direction from Semeru Eruption on 4 December 2021 using Gravity Method. Journal of Physical Science and Engineering, 7(2), 75-85. DOI: 10.17977/um024v7i22022p075
  4. Wibowo, A. (2021). Estimating the Volcanic Ash Plume Course, PM2. 5 Emissions, and Environmental Impacts Based on the December 4, 2021, Mount Semeru Eruption. DOI: 10.20944/preprints202112.0139.v1
  5. Starheim, C.C., Gomez, C., Davies, T., Lavigne, F., Wassmer, P. (2013). In-flow evolution of lahar deposits from video-imagery with implications for post-event deposit interpretation, Mount Semeru, Indonesia. Journal of volcanology and Geothermal Research, 256, 96-104. DOI: 10.1016/j.jvolgeores.2013.02.013
  6. Thouret, J.C., Lavigne, F., Suwa, H., Sukatja, B., Surono. (2007). Volcanic hazards at Mount Semeru, East Java (Indonesia), with emphasis on lahars. Bulletin of Volcanology, 70, 221-244. DOI: 10.1007/s00445-007-0133-6
  7. Cutler, N.A., Streeter, R.T., Dugmore, A.J., Sear, E.R. (2021). How do the grain size characteristics of a tephra deposit change over time?. Bulletin of Volcanology, 83(7), 45. DOI: 10.1007/s00445-021-01469-w
  8. Darmawan, R., Juliastuti, S.R., Hendrianie, N., Rachmaniah, O., Kusnadi, N.S., Ramadhani, G.S., Tominaga, M. (2022). Effect of electrode modification on the production of electrical energy and degradation of Cr (VI) waste using tubular microbial fuel cell. AIMS Environmental Science, 9(4). DOI: 10.3934/environsci.2022030
  9. Parande, A.K., Babu, B.R., Pandi, K., Karthikeyan, M.S., Palaniswamy, N. (2011). Environmental effects on concrete using Ordinary and Pozzolana Portland cement. Construction and Building Materials, 25(1), 288-297. DOI: 10.1016/j.conbuildmat.2010.06.027
  10. Salamah, S.I.T.I., Wahyuni, E.T. (2018, September). The characterization of Merapi volcanic ash as adsorbent for dyes removal from batik wastewater. In IOP Conference Series: Materials Science and Engineering (Vol. 403, No. 1, p. 012007). IOP Publishing. DOI: 10.1088/1757-899X/403/1/012007
  11. Yanti, F.M., Murti, S.S., Valentino, N., Pertiwi, A., Heriyanti, S.I., Sevie, G.N., IS, A.B.M. (2023). Impregnation Effect of Iron (Fe) and Cobalt (Co) on ZSM-5 Zeolite Catalyst from Rice Husk Ash and Coal Fly Ash for Methanol Synthesis. EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 10 (3), 1889-1897. DOI: 10.5109/7151740
  12. Titchou, F.E., Akbour, R.A., Assabbane, A., Hamdani, M. (2020). Removal of cationic dye from aqueous solution using Moroccan pozzolana as adsorbent: isotherms, kinetic studies, and application on real textile wastewater treatment. Groundwater for Sustainable Development, 11, 100405. DOI: 10.1016/j.gsd.2020.100405
  13. Di Natale, F., Lancia, A., Molino, A., Di Natale, M., Karatza, D., Musmarra, D. (2006). Capture of mercury ions by natural and industrial materials. Journal of Hazardous Materials, 132(2-3), 220-225. DOI: 10.1016/j.jhazmat.2005.09.046
  14. Mu’azu, N.D., Manzar, M.S., Zubair, M., Alhajri, E.G., Essa, M.H., Meili, L., Khan, A.H. (2022). Volcanic ashe and its NaOH modified adsorbent for superb cationic dye uptake from water: Statistical evaluation, optimization, and mechanistic studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 634, 127879. DOI: 10.1016/j.colsurfa.2021.127879
  15. Silviana, S., Hasega, A.G., Hanifah, A.R.N., Sa’adah, A.N.M. (2022). Synthesis of silica coating derived from geothermal solid waste modified with 3-aminopropyl triethoxysilane (APTES) and silver nano particles (AgNPs). EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 9 (4), 1224-1230. DOI: 10.5109/6625733
  16. Gomez, C., Lavigne, F., Hadmoko, D.S., Wassmer, P. (2018). Insights into lahar deposition processes in the Curah Lengkong (Semeru Volcano, Indonesia) using photogrammetry-based geospatial analysis, near-surface geophysics and CFD modelling. Journal of Volcanology and Geothermal Research, 353, 102-113. DOI: 10.1016/j.jvolgeores.2018.01.021
  17. Simatupang, L., Siburian, R., Sitanggang, P., Doloksaribu, M.E., Situmorang, M., Marpaung, H. (2018). Synthesis and application of silica gel based on mount sinabung fly ash for cd (ii) removal with fixed bed column. Rasāyan Journal of Chemistry [RJC], 11(02), 819-827. DOI: 10.7324/RJC.2018.1122091
  18. Simatupang, L. (2016). The preparation and characterization of sinabung volcanic ash silica based adsorbent. Jurnal Pendidikan Kimia, 8(03), 159-163. DOI: 10.24114/jpkim.v8i3.4478
  19. Ruan, H., Nishibori, M., Uchiyama, T., Kamitani, K., Shimanoe, K. (2017). Soot Oxidation Activity of Ag / HZSM-5 ( Si / Al = 40 ) Catalyst Soot Oxidation Activity of Ag / HZSM-5 ( Si / Al = 40 ) Catalyst. Evergreen Journal, (5) 7–11. DOI: 10.5109/1928668
  20. Nabil, M., Motaweh, H.A. (2018). Porous silicon powder as an adsorbent of heavy metal (nickel). In AIP Conference Proceedings (Vol. 1957, No. 1). AIP Publishing. DOI: 10.1063/1.5034324
  21. Borba, C.E., Guirardello, R., Silva, E.A., Veit, M.T., Tavares, C.R.G. (2006). Removal of nickel (II) ions from aqueous solution by biosorption in a fixed bed column: experimental and theoretical breakthrough curves. Biochemical Engineering Journal, 30(2), 184-191. DOI: 10.1016/j.bej.2006.04.001
  22. Fu, F., Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 92(3), 407-418. DOI: 10.1016/j.jenvman.2010.11.011
  23. Ifijen, I.H., Itua, A.B., Maliki, M., Ize-Iyamu, C.O., Omorogbe, S.O., Aigbodion, A.I., Ikhuoria, E.U. (2020). The removal of nickel and lead ions from aqueous solutions using green synthesized silica microparticles. Heliyon, 6(9). DOI: 10.1016/j.heliyon.2020.e04907
  24. Amran, F., Zaini, M.A.A. (2021). Sodium hydroxide-activated Casuarina empty fruit: Isotherm, kinetics and thermodynamics of methylene blue and congo red adsorption. Environmental Technology & Innovation, 23, 101727. DOI: 10.1016/j.eti.2021.101727
  25. El Felss, N., Gharzouni, A., Colas, M., Cornette, J., Sobrados, I., Rossignol, S. (2020). Structural study of the effect of mineral additives on the transparency, stability, and aging of silicate gels. Journal of Sol-Gel Science and Technology, 96, 265-275. DOI: 10.1007/s10971-020-05385-x
  26. Tome, S., Hermann, D.T., Shikuku, V.O., Otieno, S. (2021). Synthesis, characterization and application of acid and alkaline activated volcanic ash-based geopolymers for adsorptive remotion of cationic and anionic dyes from water. Ceramics International, 47(15), 20965-20973. DOI: 10.1016/j.ceramint.2021.04.097
  27. Antovska, P., Cvetkovska, M., Goračinova, K. (2006). Preparation and characterization of sol-gel processed spray dried silica xerogel microparticles as carriers of heparin sodium. Macedonian Journal of Chemistry and Chemical Engineering, 25(2), 121-126. DOI: 10.20450/mjcce.2006.295
  28. Brinker, C.J., Scherer, G.W. (2013). Sol-gel science: the physics and chemistry of sol-gel processing, Elsevier Inc., ISBN: 9780080571034
  29. Setyoningrum, T.M., Nandari, W.W., Murni, S.W., Nur, M.M.A. (2021). Effect of particle sizes and sodium hydroxide concentrations on silica extraction from minerals obtained in Kalirejo village, Kokap, Kulonprogo, Yogyakarta. Eksergi, 18(1), 29-31. DOI: 10.31315/e.v0i0.4576
  30. Zuwanna, I., Riza, M., Aprilia, S. (2021). The impact of solvent concentration on the characteristic of silica from rice husk ash using sol gel method. In IOP Conference Series: Materials Science and Engineering (Vol. 1087, No. 1, p. 012060). IOP Publishing. DOI: 10.1088/1757-899x/1087/1/012060
  31. Ma, M., Gao, K., Ma, Z., Ding, J. (2021). Influence of preparation method on the adsorptive performance of silica sulfuric acid for the removal of gaseous o-xylene. Separation and Purification Technology, 265, 118484. DOI: 10.1016/j.seppur.2021.118484
  32. Naderi, M. (2015). Surface area: brunauer–emmett–teller (BET). In Progress in filtration and separation (pp. 585-608). DOI: 10.1016/B978-0-12-384746-1.00014-8
  33. Omri, A., Wali, A., Benzina, M. (2016). Adsorption of bentazon on activated carbon prepared from Lawsonia inermis wood: Equilibrium, kinetic and thermodynamic studies. Arabian journal of chemistry, 9, S1729-S1739. DOI: 10.1016/j.arabjc.2012.04.047
  34. Horwell, C.J., Fenoglio, I., Fubini, B. (2007). Iron-induced hydroxyl radical generation from basaltic volcanic ash. Earth and Planetary Science Letters, 261(3-4), 662-669. DOI: 10.1016/j.epsl.2007.07.032
  35. Khan, K., Amin, M.N., Saleem, M.U., Qureshi, H.J., Al-Faiad, M.A., Qadir, M.G. (2019). Effect of fineness of basaltic volcanic ash on pozzolanic reactivity, ASR expansion and drying shrinkage of blended cement mortars. Materials, 12(16), 2603. DOI: 10.3390/ma12162603
  36. Bariyah, S., Simatupang, L. (2021). Activation Of Sinabung Mount Volcanic Ash Using Various Mineral Acids. Indonesian Journal of Chemical Science and Technology, 4(1), 1-4. DOI: 10.24114/ijcst.v4i1.23087
  37. Worathanakul, P., Payubnop, W., Muangpet, A. (2009). Characterization for post-treatment effect of bagasse ash for silica extraction. International Journal of Chemical and Molecular Engineering, 3(8), 398-400. DOI: 10.96f0aaaabc1a19e7ae6ae3a2a975bf96705315c2
  38. Nur'aeni, D., Hadisantoso, E.P., Suhendar, D. (2017). Adsorpsi Ion Logam Mn2+ dan Cu2+ Oleh Silika Gel dari Abu Ampas Tebu. al Kimiya: Jurnal Ilmu Kimia dan Terapan, 4(2), 70-80. DOI: 10.15575/ak.v4i2.5087
  39. Huriawati, F., Yuhanna, W.L., Mayasari, T. (2016). Pengaruh metode pengeringan terhadap kualitas serbuk seresah Enhalus acoroides dari Pantai Tawang Pacitan. Bioeksperimen: Jurnal Penelitian Biologi, 2(1), 35-43. DOI: 10.23917/bioeksperimen.v2i1.1579
  40. Maulana Yusuf, M. (2014). Studi Karakteristik Silika Gel Hasil Sintesis dari Abu Ampas Tebu dengan Variasi Konsentrasi Asam Klorida Doctoral Dissertation, UIN Sunan Gunung Djati Bandung
  41. Mori, H. (2003). Extraction of silicon dioxide from waste colored glasses by alkali fusion using potassium hydroxide. Journal of materials science, 38, 3461-3468. DOI: 10.1023/A:1025100901693
  42. Setyoningrum, T.M., Murni, S.W., Nandari, W.W., Nur, M.M.A. (2021). Effect of sodium hydroxide concentrations and particle sizes on silica extraction from mineral rock obtained in Kalirejo village, Kokap, Kulonprogo, Yogyakarta. Eksergi, 18(1), 29-31. DOI: 10.31315/e.v0i0.4576
  43. Dhaneswara, D., Fatriansyah, J.F., Situmorang, F.W., Haqoh, A.N. (2020). Synthesis of amorphous silica from rice husk ash: comparing HCl and CH3COOH acidification methods and various alkaline concentrations. Synthesis, 11(1), 200-208. DOI: 10.14716/ijtech.v11i1.3335
  44. Launer, P.J. (2013). Infrared analysis of organosilicon compounds: spectra-structure correlations. Silicone Compd. Regist. Rev. 175–178. DOI: 333000959
  45. Socrates, G. (2004). Infrared and Raman characteristic group frequencies: tables and charts. John Wiley & Sons
  46. Azmiyawati, C., Niami, S S., Darmawan, A. (2019). Synthesis of silica gel from glass waste for adsorption of Mg2+, Cu2+, and Ag+ metal ions. In IOP Conference Series: Materials Science and Engineering (Vol. 509, No. 1, p. 012028). IOP Publishing. DOI: 10.1088/1757-899X/509/1/012028
  47. Mane, P.V., Rego, R.M., Yap, P.L., Losic, D., Kurkuri, M.D. (2024). Unveiling cutting-edge advances in high surface area porous materials for the efficient removal of toxic metal ions from water. Progress in Materials Science, 101314. DOI: 10.1016/j.pmatsci.2024.101314
  48. Budnyak, T. M., Pylypchuk, I.V., Tertykh, V.A., Yanovska, E.S., Kolodynska, D. (2015). Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol-gel method. Nanoscale Research Letters, 10, 1-10. DOI: 10.1186/s11671-014-0722-1
  49. Sdiri, A., Higashi, T., Bouaziz, S., Benzina, M. (2014). Synthesis and characterization of silica gel from siliceous sands of southern Tunisia. Arabian Journal of Chemistry, 7(4), 486-493. DOI: 10.1016/j.arabjc.2010.11.007
  50. Xu, H., Xu, D.C., Wang, Y. (2017). Natural indices for the chemical hardness/softness of metal cations and ligands. ACS Omega, 2(10), 7185-7193. DOI: 10.1021/acsomega.7b01039
  51. Kuśmierek, K., Świątkowski, A. (2015). The influence of different agitation techniques on the adsorption kinetics of 4-chlorophenol on granular activated carbon. Reaction Kinetics, Mechanisms and Catalysis, 116, 261-271. DOI: 10.1007/s11144-015-0889-1
  52. Ahsan, N., Shafique, U., Jamil, N., Munawar, M. A., Anwar, J. (2011). Removal of toxic dichlorophenol from water by sorption with chemically activated carbon of almond shells–A green approach. Journal of the Chemical Society of Pakistan, 33(6), 640
  53. Wulandari, E., Hidayat, A.E., Moersidik, S.S. (2020). Comparison of copper adsorption effectivity in acid mine drainage using natural zeolite and synthesized zeolite. In IOP Conference Series: Earth and Environmental Science (Vol. 473, No. 1, p. 012143). DOI: 10.1088/1755-1315/473/1/012143
  54. Asselah, A., Tazerouti, A. (2014). Photosulfochlorination synthesis and physicochemical properties of methyl ester sulfonates derived from lauric and myristic acids. Journal of Surfactants and Detergents, 17(6), 1151-1160. DOI: 10.1007/s11743-014-1635-9
  55. Balasubramanian, C., Joseph, B., Gupta, P., Saini, N.L., Mukherjee, S., Di Gioacchino, D., Marcelli, A. (2014). X-ray absorption spectroscopy characterization of iron-oxide nanoparticles synthesized by high temperature plasma processing. Journal of Electron Spectroscopy and Related Phenomena, 196, 125-129. DOI: 10.1016/j.elspec.2014.02.011
  56. Holder, C.F., Schaak, R.E. (2019). Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano, 13(7), 7359-7365. DOI: 10.1021/acsnano.9b05157
  57. Muktadir, G., Amro, M.D., Kummer, N., Freese, C., Abid, K. (2021). Application of x-ray diffraction (Xrd) and rock–eval analysis for the evaluation of middle eastern petroleum source rock. Energies, 14(20), 6672. DOI: 10.3390/en14206672

Last update:

No citation recorded.

Last update:

No citation recorded.