skip to main content

The Effect of Boron Concentration on the Properties and Paraselectivity of Zeolite HZSM-5 in the Methylation Reaction of Ethylbenzene

1Department of Physical and Colloid Chemistry, Chemistry Faculty, Baku State University, Baku AZ 1148, Azerbaijan

2Department of Petrochemical technology and industrial ecology Chemical Tech-nology, Azerbaijan State Oil and Industry University, Baku, AZ 1002, Azerbaijan

Received: 4 Feb 2025; Revised: 14 Mar 2025; Accepted: 15 Mar 2025; Available online: 17 Mar 2025; Published: 30 Aug 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

In order to increase the selectivity for p-ethyltoluene, catalytic systems based on HZSM-5 zeolite modified with orthoboric acid were obtained, which were used in the alkylation of ethylbenzene with methanol. The reaction was carried out in a continuous flow reactor with a fixed catalyst bed in the temperature range of 300-400 °C at atmospheric pressure to study the effect of boron concentration in the composition of HZSM-5 on the selectivity of the formation of ethyltoluenes and p-ethyltoluene. Physicochemical and textural characteristics of the catalysts were characterized by X-ray Diffraction (XRD), Infra Red (IR) spectroscopy, NH3-Temperature Program Desorption (TPD) and low-temperature Nitrogen Adsorption (NA). It was found that the decrease in the density of strong acid sites, reduction in the volume of micropores and increase in the mesoporosity of zeolite as a result of modification are the main reasons for the enhancement of the catalyst selectivity to p-ethyltoluene. Catalyst 5 %B-HZSM-5 in the temperature range of 300 - 350 °C with conversion of ethylbenzene equal to 14.7-18.4 % shows a sufficiently high selectivity for p-ethyltoluene (60.5-70.2 %). Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: HZSM-5 zeolite; boron modification; selectivity for p-ethyltoluone; ethylbenzene; methanol
Funding: Ministry of Science and Education of the Republic of Azerbaijan

Article Metrics:

  1. Degnan, T.F. (2003). The implications of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemical industries. Journal of Catalysis, 216(1–2), 32-46. DOI: 10.1016/S0021-9517(02)00105-7
  2. Perego, C., Ingallina, P. (2004). Combining alkylation and transalkylation for alkylaromatic production. Green Chemistry, 6(6), 274-279. DOI: 10.1039/B403277M
  3. Nai, Y. Chen. (2001). Personal Perspective of the Development of Para Selective ZSM-5 Catalysts. Industrial & Engineering Chemistry Research, 40(20), 4157–4161. DOI: 10.1021/ie000870p
  4. Sotelo, J.L., Rodríguez, A., Águeda, V., Gómez, P. (2010). Supercritical fluids as reaction media in the ethylbenzene disproportionation on ZSM-5. The Journal of Supercritical Fluids, 55(1), 241-245. DOI: 10.1016/j.supflu.2010.07.006
  5. Sharanappa, N., Pai, S., Bokade, V.V. (2004). Selective alkylation and disproportionation of ethylbenzene in the presence of other aromatics. Journal of Molecular Catalysis A: Chemical, 217(1–2), 185-191. DOI: 10.1016/j.molcata.2004.03.031
  6. Mamedov, S.E., Iskenderova, A.A., Akhmedova, N.F., Mamedov, E.S. (2020). The Influence of Modification on the Properties of High-Silica TsVM Zeolite in the Benzene Alkylation Reaction with Ethanol. Petroleum Chemistry, 60, 950-956. DOI: 10.1134/S0965544120080071
  7. Huang, F., Hong, Z., Li, L., Miao, L., Gao, X., Zhao G., Zhu Z. (2024). Shape-selective alkylation of toluene with ethanol over a twin intergrowth structured ZSM-5: modulation of acidity and diffusivity via interface engineering. Inorganic Chemistry, 63(7), 3506–3515. DOI: 10.1021/acs.inorgchem.3c04325
  8. Ghosal, D., Basu, J.K., Sengupta, S. (2015). Application of La-ZSM-5 Coated Silicon Carbide Foam Catalyst for Toluene Methylation with Methanol. Bulletin of Chemical Reaction Engineering & Catalysis, 10(2), 201-209. DOI: 10.9767/bcrec.10.2.7872.201-209
  9. Chuang, Y.-Y., Ou, M.F., Ho, G., Du, K.-J., Liu, S.-B., Tsai, T.-C. (2022). Selective mono-alkylbenzene disproportionation over silylated MFI zeolite. Catalysis Today, 388–389, 134-140. DOI: 10.1016/j.cattod.2020.08.020
  10. Mitsuyoshi, D., Kuroiwa, K., Kataoka, Y., Nakagawa, T., Kosaka, M., Nakamura, K., Suganuma, S., Araki, Y., Katada, N. (2017). Shape selectivity in toluene disproportionation into para-xylene generated by chemical vapor deposition of tetramethoxysilane on MFI zeolite catalyst. Microporous and Mesoporous Materials, 242, 118-126. DOI: 10.1016/j.micromeso.2017.01.022
  11. Janardhan, H.L., Shannbhag, G.V., Halgeri, A.B. (2014). Shape-selective catalysis by phosphate modified ZSM-5: Generation of new acid sites with pore narrowing. Applied Catalysis A: General, 471, 12-18. DOI: 10.1016/j.apcata.2013.11.029
  12. Wang, D., Zhang, J., Yang, Y., Han, S., An, X., Dong, P., Li, G., Fan, X. (2023). Process simulation for enhanced p-xylene production via aromatics complex integrated toluene methylation with low-cost methanol feedstock. Chemical Engineering Research and Design, 191, 184–195. DOI: 10.1016/j.cherd.2023.01.003
  13. Al-Khattaf, S., Agostino, C.D., Akhtar, M.N., Al-Yassir, N., Tan N.Y., Gladden, L.F. (2014). The effect of coke deposition on the activity and selectivity of the HZSM-5 zeolite during ethylbenzene alkylation reaction in the presence of ethanol. Catalysis Science & Technology, 4(4), 1017. DOI: 10.1039/C3CY00925D
  14. Albahar, M., Li, C., Zholobenko, V.L., Garforth, A.A. (2020). The effect of ZSM-5 zeolite crystal size on p-xylene selectivity in toluene disproportionation.The effect of ZSM-5 zeolite crystal size on p-xylene selectivity in toluene disproportionation. Microporous and Mesoporous Materials, 2020, 302, 110221-110229. DOI: 10.1016/j.micromeso..110221
  15. Mahmudov, K.T., Kerimli, F.Sh., Mammadov, E.S., Gurbanov, A.V., Akhmedova, N.F., Mammadov, S.E. (2022). Catalytic disproportionation of ethylbenzene over ln-modified hzsm-5 zeolites. Petrolium Chemistry, 4(2), 122–129. DOI: 10.1134/S0965544122060147
  16. Zhu, Z., Chen, Q., Xie, Z., Yang, W., Kong, D., Li, C. (2006). Shape-selective disproportionation of ethylbenzene to para-diethylbenzene over ZSM-5 modified by chemical liquid deposition and MgO. Journal of Molecular Catalysis A: Chemical, 248(1–2), 152-158. DOI: 10.1016/j.molcata.2005.10.023
  17. Abdullaeva, N.M., Voskressenskii, L.G., Akhmedova, N.F., Mamedov, S.E. (2021). Alkylation of Toluene with Isopropanol on Lantanum Modified ZSM-5 Zeolite. Petrolium Chemistry, 61, 190–197. DOI: 10.1134/S0965544121020018
  18. Sugi, Y., Kubota, Y., Komura K., Sugiyama, N., Hayashi, M., Kim, J.-H., Seo, G. (2006). Shape-selective alkylation and related reactions of mononuclear aromatic hydrocarbons over H-ZSM-5 zeolites modified with lanthanum and cerium oxides. Applied Catalysis A: General, 299, 157-166. DOI: 10.1016/j.apcata.2005.10.024
  19. Ogunbadejo, B.A., Osman, M.S., Arudra, P., Aitani, A.M., Al-Khattaf, S.S. (2015). Alkylation of toluene with ethanol to para-ethyltoluene over MFI zeolites: Comparative study and kinetic modeling. Catalysis Today. 243, 109-117. DOI: 10.1016/j.cattod.2014.08.019
  20. Huang, F., Hong, Z., Li, L., Miao, L., Gao, X., Zhao, G., Zhu, Z. (2024). Shape-Selective Alkylation of Toluene with Ethanol over a Twin Intergrowth Structured ZSM-5: Modulation of Acidity and Diffusivity via Interface Engineering. Inorganic Chemistry, 63(7), 3506-3515. DOI: 10.1021/acs.inorgchem.3c04325
  21. Aliev, I.A., Akhmedov, E.I., Mamedov, E.S., Gakhramanov, T.O. (2010). Toluene ethylation with ethanol on cadmium-promoted high-silica zeolite, Petrolium Chemistry, 50, 373-375. DOI: 10.1134/S0965544110050099
  22. Parikh, P.A., Subrahmanyam, N., Bhat, Y.S., Halgeri, A.B. (1992). Toluene ethylation with ethanol over Ga-MFI zeolite: a kinetic study. Industrial & Engineering Chemistry Research, 31(4), 1012-1016. DOI: 10.1021/IE00004A005
  23. Walendziewski, J., Trawczyński, J. (1996). Alkylation of Toluene with Ethanol. Industrial & Engineering Chemistry Research, 35, 10, 3356-3361. DOI: 10.1021/ie950659r
  24. Parikh, P.A., Subrahmanyam, N., Bhat, Y.S., Halgeri, A.B. (1992). Toluene ethylation over metallosilicates of MFI structure. Effects of acidity and crystal size on para-selectivity. Catalysis Letters, 14, 107-113. DOI: 10.1007/BF00764224
  25. Pertko, O.P., Voloshyna, Y.G., Kontsevoi, A.L., Trachevsky, V.V. (2021). Ethylbenzene formation and its conversion towards coke in the side-chain methylation of toluene on a basic X zeolite. Journal of Porous Materials, 28, 1713–1723. DOI: 10.1007/s10934-021-01119-8
  26. Kazansky, V.B., Borovkov, V.Y., Serykh, A.I., Santen, R.A., Anderson, B.G. (2000). Nature of the sites of dissociative adsorption of dihydrogen and light paraffins in ZnHZSM 5 zeolite prepared by incipient wetness impregnation. Catalysis Letters, 66, 39–47. DOI: 10.1023/A:1019031119325
  27. Zilkova, N., Bejblovа, М., Gil, В., Zones, S.I., Burton, A.W., Chen, C.Y., Musilová-Pavlсková, Z., Kosova, G., Cejka, J. (2009). The role of the zeolite channel architecture and acidity on the activity and selectivity in aromatic transformations: The effect of zeolite cages in SSZ-35 zeolite. Journal of Catalysis, 266, 79–91. DOI: 10.1016/j.jcat.2009.05.017
  28. Makhmudova, N.I., Mammadov, E.S., Kerimli, F.Sh., Ilyasli, T.M., Akhmedova, N.F., Mammadov, S.E. (2022). Study of Catalytic Properties of the HoxMg1-xAl2O4 Modified HZSM-5 Zeolite in Conversion of Methanol to C2-C4 Alkenes and p-Xylene. Bulletin of Chemical Reaction Engineering & Catalysis, 17(4), 725-732. DOI: 10.9767/bcrec.17.4.15115.725-732
  29. Mammadov, E.S., Gahramanov, T.O., Akhmedova, N.F., Mammadov, S.E., Mamedova, A.Z., Ahmadov, E.İ. (2024). Effects of the Type and Loading of Rare-Earth Metals (Pr, Yb, Ho) on the para-Selectivity of HTsVM Zeolite in Toluene Ethylation. Petroleum Chemistry, 64, 258-266. DOI: 10.1134/S0965544124010134
  30. Li, X., Alwakwak, A.-A., Rezaei, F., Rownaghi, A.A. (2018). Synthesis of Cr, Cu, Ni, and Y-Doped 3D-Printed ZSM-5 Monoliths and Their Catalytic Performance for n-Hexane Cracking. ACS Applied Energy Materials, 1(6), 2740–2748. DOI: 10.1021/acsaem.8b00412
  31. Baerlocher, Ch., McCusker, L.B., Olson, D.H. (2007). Atlas of zeolite framework types. Elsevier Science, Amsterdam. sixth revised edition. 405 р. https://www.iza-structure.org/books/Atlas_6ed.pdf
  32. Emana, A.N., Chand, S. (2015). Alkylation of benzene with ethanol over modified HZSM-5 zeolite catalysts. Applied Petrochemical Research, 5, 121–134. DOI: 10.1007/s13203-015-0100-7
  33. Haw, J.F., Song, W., Marcus, D.M., Nicholas, J.B. (2003). The Mechanism of Methanol to Hydrocarbon Catalysis. Accounts of Chemical Research, 36, 5, 317–326. DOI: 10.1021/ar020006o
  34. Yuen, L.-T., Zones, S.I., Harris, T.V., Gallegos, E.J., Auroux, A. (1994). Product selectivity in methanol to hydrocarbon conversion for isostructural compositions of AFI and CHA molecular sieves. Microporous Materials, 2(2), 105-117. DOI: 10.1016/0927-6513(93)E0039-J
  35. Atanda, L.A., Aitani, A.M., Al-Khattaf, S.S. (2015). Experimental and kinetic studies of ethyltoluenes production via different alkylation reactions. Chemical Engineering Research and Design, 95, 34-46. DOI: 10.1016/j.cherd.2015.01.001
  36. Tian, Sh.X., Ji, Sh.F., Sun, Q. (2014). Preparation of Phosphorus Modified HZSM-5 Zeolite Catalysts and Their Catalytic Performances of Methanol to Olefins. Advanced Materials Research, 875–877, 295–299. DOI: 10.4028/www.scientific.net/amr.875-877.295
  37. Zhao, Y., Wu, H., Tan, W., Zhang, M., Liu, M., Song, Ch., Wang, X., Guo, X. (2010). Effect of metal modification of HZSM-5 on catalyst stability in the shape-selective methylation of toluene. Catalysis Today, 156(1–2), 69-73. DOI: 10.1016/j.cattod.2009.12.012
  38. Zhang, C., Xu, Zh., Wan, K., Liu, Q. (2004). Synthesis, characterization and catalytic properties of nitrogen-incorporated ZSM-5 molecular sieves with bimodal pores. Applied Catalysis A: General, 258(1), 55-61. DOI: 10.1016/j.apcata.2003.08.012
  39. Sing, K.S.W.; Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Applied Chemistry, 57(4), 603-619. DOI: 10.1351/pac19855704
  40. Rostamizadeh, M., Yaripour, F. (2017). Dealumination of high silica H-ZSM-5 as long-lived nanocatalyst for methanol to olefin conversion. Journal of the Taiwan Institute of Chemical Engineers. 71, 454-463. DOI: 10.1016/j.jtice.2016

Last update:

No citation recorded.

Last update:

No citation recorded.