skip to main content

Tunable Optical and Photoluminescence Properties of Metal X (Ni, Co, Mn, Ag)-Doped ZnSe Quantum Dots: Structural, Spectroscopic, and Colorimetric Analysis

1Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam

2Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Viet Nam

3Faculty of Fundamental Science, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 700000, Viet Nam

Received: 29 Mar 2025; Revised: 23 Apr 2025; Accepted: 24 Apr 2025; Available online: 26 Apr 2025; Published: 30 Aug 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

This study explores the impact of Ni, Co, Mn, and Ag doping on the optical and photoluminescence properties of ZnSe quantum dots (QDs). Structural analysis confirms successful dopant incorporation, with XRD revealing lattice strain-induced shifts. Optical studies show that Ni²⁺ and Co²⁺ induce blue shifts, while Mn²⁺ and Ag⁺ create redshifted emissions. Photoluminescence analysis demonstrates that Mn²⁺ doping enhances quantum efficiency to 49.52% via the 4T16A1 transition. Ag+-doped ZnSe exhibits blue-shifted emissions but suffers from defect-related non-radiative losses. CIE color coordinates validate tunable emissions, confirming potential applications in LEDs, displays, and bioimaging. These findings provide insights into dopant-induced band structure modifications, advancing the design of high-performance luminescent materials for optoelectronics. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: ZnSe Quantum Dots; Metal-Doped Semiconductors; Transition Metal Doping; Fluorescence Quantum Yield; CIE

Article Metrics:

  1. Singh, S.B., Limaye, M. V., Date, S.K., Gokhale, S., Kulkarni, S.K. (2009). Iron substitution in CdSe nanoparticles: Magnetic and optical properties. Physical Review B, 80(23), 235421. DOI: 10.1103/PhysRevB.80.235421
  2. Van, H.T., Vinh, N.D., Ca, N.X., Hien, N.T., Luyen, N.T., Do, P.V., Khien, N.V. (2020). Effects of ligand and chemical affinity of S and Se precursors on the shape, structure and optical properties of ternary CdS1−xSex alloy nanocrystals. Materials Letters, 264, 127387. DOI: 10.1016/j.matlet.2020.127387
  3. Ca, N.X., Van, H.T., Do, P. V., Thanh, L.D., Tan, P.M., Truong, N.X., Oanh, V.T.K., Binh, N.T., Hien, N.T. (2020). Influence of precursor ratio and dopant concentration on the structure and optical properties of Cu-doped ZnCdSe-alloyed quantum dots. RSC Advances, 10(43), 25618–25628. DOI: 10.1039/D0RA04257A
  4. Das, S., Mandal, K.C. (2012). Optical downconversion in rare earth (Tb3+ and Yb3+) doped CdS nanocrystals. Materials Letters, 66(1), 46–49. DOI: 10.1016/j.matlet.2011.08.034
  5. Memon, U.B., Chatterjee, U., Gandhi, M.N., Tiwari, S., Duttagupta, S.P. (2014). Synthesis of ZnSe Quantum Dots with Stoichiometric Ratio Difference and Study of its Optoelectronic Property. Procedia Materials Science, 5, 1027–1033. DOI: 10.1016/j.mspro.2014.07.393
  6. Memon, U.B., Chatterjee, U., Gandhi, M.N., Tiwari, S., Duttagupta, S.P. (2014). Synthesis of ZnSe Quantum Dots with Stoichiometric Ratio Difference and Study of its Optoelectronic Property. Procedia Materials Science, 5, 1027–1033. DOI: 10.1016/j.mspro.2014.07.393
  7. Baum, F., da Silva, M.F., Linden, G., Feijo, D., Rieder, E.S., Santos, M.J.L. (2019). Growth dynamics of zinc selenide quantum dots: the role of oleic acid concentration and synthesis temperature on driving optical properties. Journal of Nanoparticle Research, 21(2), 42. DOI: 10.1007/s11051-019-4485-6
  8. Vempuluru, N.R., Kwon, H., Parnapalle, R., Urupalli, B., Munnelli, N., Lee, Y., Marappan, S., Mohan, S., Murikinati, M.K., Muthukonda Venkatakrishnan, S., Kim, K., Ahn, C.W., Yang, J.-M. (2024). ZnS/ZnSe heterojunction photocatalyst for augmented hydrogen production: Experimental and theoretical insights. International Journal of Hydrogen Energy, 51, 524–539. DOI: 10.1016/j.ijhydene.2023.08.249
  9. Lin, S., Li, J., Pu, C., Lei, H., Zhu, M., Qin, H., Peng, X. (2020). Surface and intrinsic contributions to extinction properties of ZnSe quantum dots. Nano Research, 13(3), 824–831. DOI: 10.1007/s12274-020-2703-2
  10. Zahra, T., Alanazi, M.M., Alahmari, S.D., Abdelmohsen, S.A.M., Abdullah, M., Aman, S., Al-Sehemi, A.G., Henaish, A.M.A., Ahmad, Z., Tahir Farid, H.M. (2024). Hydrothermally synthesized ZnSe@FeSe nanocomposite: A promising candidate for energy storage devices. International Journal of Hydrogen Energy, 59, 97–106. DOI: 10.1016/j.ijhydene.2024.01.293
  11. El-assar, M., Taha, T.E., El-Samie, F.E.A., Fayed, H.A., Aly, M.H. (2023). ZnSe-based highly-sensitive SPR biosensor for detection of different cancer cells and urine glucose levels. Optical and Quantum Electronics, 55, 76. DOI: 10.1007/s11082-022-04326-y
  12. Hien, N.T., Tan, P.M., Van, H.T., Lien, V.T.K., Do, P.V., Loan, P.N., Kien, N.T., Luyen, N.T., Ca, N.X. (2020). Photoluminescence properties of Cu-doped CdTeSe alloyed quantum dots versus laser excitation power and temperature. Journal of Luminescence, 218, 116838. DOI: 10.1016/j.jlumin.2019.116838
  13. Ca, N.X., Hien, N.T., Loan, P.N., Tan, P.M., Thuy, U.T.D., Phan, T.L., Nguyen, Q.B. (2019). Optical and Ferromagnetic Properties of Ni-Doped CdTeSe Quantum Dots. Journal of Electronic Materials, 48(4), 2593–2599. DOI: 10.1007/s11664-019-07017-9
  14. Sheokand, S., Ahlawat, D.S., Singh, A. (2024). Nano structural and opto-magnetic investigation of Co–Ni co-doped ZnSe for spintronics. Micro and Nanostructures, 186, 207740. DOI: 10.1016/j.micrna.2023.207740
  15. Muruganandam, S., Parivathini, K., Murugadoss, G. (2021). Effect of co-doped (Ni2+:Co2+) in CdS nanoparticles: investigation on structural and magnetic properties. Applied Physics A, 127(6), 400. DOI: 10.1007/s00339-021-04555-0
  16. Thu Huong, T.T., Loan, N.T., Loc, D.X., Dieu Thuy, U.T., Stoilova, O., Liem, N.Q. (2021). Enhanced luminescence in electrospun polymer hybrids containing Mn-doped ZnSe/ZnS nanocrystals. Optical Materials, 113, 110858. DOI: 10.1016/j.optmat.2021.110858
  17. Qiao, F., Kang, R., Liang, Q., Cai, Y., Bian, J., Hou, X. (2019). Tunability in the Optical and Electronic Properties of ZnSe Microspheres via Ag and Mn Doping. ACS Omega, 4(7), 12271–12277. DOI: 10.1021/acsomega.9b01539
  18. Tavakkoli Yaraki, M., Tayebi, M., Ahmadieh, M., Tahriri, M., Vashaee, D., Tayebi, L. (2017). Synthesis and optical properties of cysteamine-capped ZnS quantum dots for aflatoxin quantification. Journal of Alloys and Compounds, 690, 749–758. DOI: 10.1016/j.jallcom.2016.08.158
  19. Wang, C., Xu, S., Wang, Y., Wang, Z., Cui, Y. (2014). Aqueous synthesis of multilayer Mn:ZnSe/Cu:ZnS quantum dots with white light emission. J. Mater. Chem. C, 2(4), 660–666. DOI: 10.1039/C3TC31602E
  20. Abd El-sadek, M.S., Nooralden, A.Y., Moorthy Babu, S., Palanisamy, P.K. (2011). Influence of different stabilizers on the optical and nonlinear optical properties of CdTe nanoparticles. Optics Communications, 284(12), 2900–2904. DOI: 10.1016/j.optcom.2011.01.071
  21. Rabinovich, D. (2000). Advanced Inorganic Chemistry, 6th Edition (Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M.). Journal of Chemical Education, 77(3), 311. DOI: 10.1021/ed077p311
  22. Jean-Louis Basdevant James Rich Michel Spiro (2004). Fundamentals In Nuclear Physics. Polytechnique
  23. McCloskey, J.T., Newman, M.C., Clark, S.B. (1996). Predicting the relative toxicity of metal ions using ion characteristics: Microtox® bioluminescence assay. Environmental Toxicology and Chemistry, 15(10), 1730–1737. DOI: 10.1002/etc.5620151011
  24. Rabinovich, D. (2000). Advanced Inorganic Chemistry, 6th Edition (Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M.). Journal of Chemical Education, 77(3), 311. DOI: 10.1021/ed077p311
  25. Jean-Louis Basdevant, M.S.J.R. (2005). Fundamentals In Nuclear Physics. New York: Springer-Verlag
  26. Blume, G., Cevc, G. (1993). Molecular mechanism of the lipid vesicle longevity in vivo. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1146(2), 157–168. DOI: 10.1016/0005-2736(93)90351-Y
  27. Geszke, M., Murias, M., Balan, L., Medjahdi, G., Korczynski, J., Moritz, M., Lulek, J., Schneider, R. (2011). Folic acid-conjugated core/shell ZnS:Mn/ZnS quantum dots as targeted probes for two photon fluorescence imaging of cancer cells. Acta Biomaterialia, 7(3), 1327–1338. DOI: 10.1016/j.actbio.2010.10.012
  28. Zhang, B.-H., Wu, F.-Y., Wu, Y.-M., Zhan, X.-S. (2010). Fluorescent Method for the Determination of Sulfide Anion with ZnS:Mn Quantum Dots. Journal of Fluorescence, 20(1), 243–250. DOI: 10.1007/s10895-009-0545-0
  29. Chandrakar, R.K., Baghel, R.N., Chandra, V.K., Chandra, B.P. (2015). Synthesis, characterization and photoluminescence studies of Mn doped ZnS nanoparticles. Superlattices and Microstructures, 86, 256–269. DOI: 10.1016/j.spmi.2015.07.043
  30. Sundaresan, A., Bhargavi, R., Rangarajan, N., Siddesh, U., Rao, C.N.R. (2006). Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Physical Review B, 74(16), 161306. DOI: 10.1103/PhysRevB.74.161306
  31. Arda, L. (2019). The effects of Tb doped ZnO nanorod: An EPR study. Journal of Magnetism and Magnetic Materials, 475, 493–501. DOI: 10.1016/j.jmmm.2018.11.121
  32. Velumani, S., Narayandass, S.K., Mangalaraj, D. (1998). Structural characterization of hot wall deposited cadmium selenide thin films. Semiconductor Science and Technology, 13(9), 1016–1024. DOI: 10.1088/0268-1242/13/9/009
  33. Paufler, P.P. (2006). Solid state chemistry: an introduction. 3rd Edition. By Lesley E. Smart and Elaine A. Moore. Pp. 407. Boca Raton: Taylor and Francis CRC Press, 2005. Price (softcover) USD 69.95. ISBN 0 748 77516 1. Journal of Applied Crystallography, 39(2), 288–288. DOI: 10.1107/S002188980600152X
  34. Hamizi, N.A., Johan, M.R., Ghazali, N., Abdul Wahab, Y., Chowdhury, Z.Z., Akbarzadeh, O., Sagadevan, S., Badruddin, I.A., Yunus Khan, T.M., Kamangar, S. (2019). Lattice Strain Analysis of a Mn-Doped CdSe QD System Using Crystallography Techniques. Processes, 7(10), 639. DOI: 10.3390/pr7100639
  35. Lange, H., Kelley, D.F. (2020). Spectroscopic Effects of Lattice Strain in InP/ZnSe and InP/ZnS Nanocrystals. The Journal of Physical Chemistry C, 124(41), 22839–22844. DOI: 10.1021/acs.jpcc.0c07145
  36. Shen, H., Wang, H., Li, X., Niu, J.Z., Wang, H., Chen, X., Li, L.S. (2009). Phosphine-free synthesis of high quality ZnSe, ZnSe/ZnS, and Cu-, Mn-doped ZnSe nanocrystals. Dalton Transactions, (47), 10534. DOI: 10.1039/b917674h
  37. Ca, N.X., Van, H.T., Do, P. V., Thanh, L.D., Tan, P.M., Truong, N.X., Oanh, V.T.K., Binh, N.T., Hien, N.T. (2020). Influence of precursor ratio and dopant concentration on the structure and optical properties of Cu-doped ZnCdSe-alloyed quantum dots. RSC Advances, 10(43), 25618–25628. DOI: 10.1039/D0RA04257A
  38. Mondal, P., Sathiyamani, S., Das, S., Viswanatha, R. (2023). Electronic structure study of dual-doped II–VI semiconductor quantum dots towards single-source white light emission. Nanoscale, 15(37), 15288–15297. DOI: 10.1039/D3NR03542E
  39. Lee, G.-J., Anandan, S., Masten, S.J., Wu, J.J. (2014). Sonochemical Synthesis of Hollow Copper Doped Zinc Sulfide Nanostructures: Optical and Catalytic Properties for Visible Light Assisted Photosplitting of Water. Industrial & Engineering Chemistry Research, 53(21), 8766–8772. DOI: 10.1021/ie500663n
  40. Nguyen, T.P., Lam, Q.V., Vu, T.B. (2018). Effects of precursor molar ratio and annealing temperature on structure and photoluminescence characteristics of Mn-doped ZnS quantum dots. Journal of Luminescence, 196, 359–367. DOI: 10.1016/j.jlumin.2017.12.060
  41. Bansal, N., Mohanta, G.C., Singh, K. (2017). Effect of Mn 2+ and Cu 2+ co-doping on structural and luminescent properties of ZnS nanoparticles. Ceramics International, 43(9), 7193–7201. DOI: 10.1016/j.ceramint.2017.03.007
  42. Kuzmin, A., Dile, M., Laganovska, K., Zolotarjovs, A. (2022). Microwave-assisted synthesis and characterization of undoped and manganese doped zinc sulfide nanoparticles. Materials Chemistry and Physics, 290, 126583. DOI: 10.1016/j.matchemphys.2022.126583
  43. Murugadoss, G. (2011). Synthesis, optical, structural and thermal characterization of Mn2+ doped ZnS nanoparticles using reverse micelle method. Journal of Luminescence, 131(10), 2216–2223. DOI: 10.1016/j.jlumin.2011.03.048
  44. Tavakkoli Yaraki, M., Tayebi, M., Ahmadieh, M., Tahriri, M., Vashaee, D., Tayebi, L. (2017). Synthesis and optical properties of cysteamine-capped ZnS quantum dots for aflatoxin quantification. Journal of Alloys and Compounds, 690, 749–758. DOI: 10.1016/j.jallcom.2016.08.158
  45. Pike, N.A., Pachter, R., Martinez, A.D., Cook, G. (2022). Computational analysis of the optical response of ZnSe with d-orbital defects. Journal of Physics: Condensed Matter, 34(20), 205402. DOI: 10.1088/1361-648X/ac594a
  46. Pradhan, N., Das Adhikari, S., Nag, A., Sarma, D.D. (2017). Luminescence, Plasmonic, and Magnetic Properties of Doped Semiconductor Nanocrystals. Angewandte Chemie International Edition, 56(25), 7038–7054. DOI: 10.1002/anie.201611526
  47. Mercey, G., Verdelet, T., Renou, J., Kliachyna, M., Baati, R., Nachon, F., Jean, L., Renard, P.-Y. (2012). Reactivators of Acetylcholinesterase Inhibited by Organophosphorus Nerve Agents. Accounts of Chemical Research, 45(5), 756–766. DOI: 10.1021/ar2002864
  48. Yan, J., Estévez, M.C., Smith, J.E., Wang, K., He, X., Wang, L., Tan, W. (2007). Dye-doped nanoparticles for bioanalysis. Nano Today, 2(3), 44–50. DOI: 10.1016/S1748-0132(07)70086-5
  49. Pechstedt, K., Whittle, T., Baumberg, J., Melvin, T. (2010). Photoluminescence of Colloidal CdSe/ZnS Quantum Dots: The Critical Effect of Water Molecules. The Journal of Physical Chemistry C, 114(28), 12069–12077. DOI: 10.1021/jp100415k
  50. Grabolle, M., Spieles, M., Lesnyak, V., Gaponik, N., Eychmüller, A., Resch-Genger, U. (2009). Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties. Analytical Chemistry, 81(15), 6285–6294. DOI: 10.1021/ac900308v
  51. Pons, T., Lequeux, N., Mahler, B., Sasnouski, S., Fragola, A., Dubertret, B. (2009). Synthesis of Near-Infrared-Emitting, Water-Soluble CdTeSe/CdZnS Core/Shell Quantum Dots. Chemistry of Materials, 21(8), 1418–1424. DOI: 10.1021/cm8027127
  52. Kubin, R.F., Fletcher, A.N. (1982). Fluorescence quantum yields of some rhodamine dyes. Journal of Luminescence, 27(4), 455–462. DOI: 10.1016/0022-2313(82)90045-X
  53. Demasa, J.N., Crosby, G.A. (1971). The Measurement of Photoluminescence Quantum Yields. A Review. The Journal of Physical Chemistry, 75, 8, 15 April, 991-1024. DOI: 10.1021/j100678a001
  54. Zeng, R., Zhang, T., Dai, G., Zou, B. (2011). Highly Emissive, Color-Tunable, Phosphine-Free Mn:ZnSe/ZnS Core/Shell and Mn:ZnSeS Shell-Alloyed Doped Nanocrystals. The Journal of Physical Chemistry C, 115(7), 3005–3010. DOI: 10.1021/jp111288h
  55. Kubin, R.F., Fletcher, A.N. (1982). Fluorescence quantum yields of some rhodamine dyes. Journal of Luminescence, 27(4), 455–462. DOI: 10.1016/0022-2313(82)90045-X

Last update:

No citation recorded.

Last update:

No citation recorded.