skip to main content

Impact of Zirconia and Lanthanum Promoters on Multiwalled CNT Generation in Dry Reforming of Methane

1Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

Received: 30 Dec 2024; Revised: 7 May 2025; Accepted: 8 May 2025; Available online: 10 May 2025; Published: 30 Aug 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

In this study, three distinct carbon nanotubes (CNTs) — Zr-Ni/CeO2, La-Ni/CeO2, and Ni/CeO2 were produced via dry reforming of methane (DRM) at 800°C for 180 minutes. These catalysts were initially synthesized using ultrasonic-assisted citric impregnation method to enhance metal promoter dispersion. X-ray diffraction (XRD) confirmed that Zr and La doping minimized carbon deposition. Brunauer-Emmett-Teller (BET) analysis revealed typical mesoporous structures of stacked laminar nanorods. Thermogravimetric analysis (TGA) quantified carbon deposits as Zr-Ni/CeO2 (5.1 wt%) < La-Ni/CeO2 (7.85 wt%) < Ni/CeO2 (11.3 wt%). TEM and FESEM confirmed the formation of multiwalled carbon nanotubes (MWCNTs), while XPS provided insights into surface chemistry, oxidation states, and defect sites. Doping with Zr and La enhanced crystallinity, CeZr phase formation, thermal stability, and reduced carbon deposition, with MWCNTs exhibiting higher graphitization (IG/ID: Zr-Ni/CeO2 = 1.25, La-Ni/CeO2 = 1.59) compared to Ni/CeO2 (IG/ID = 1.15). This discovery represents a breakthrough in catalyst development, providing a dual advantage of reducing carbon deposition and boosting H₂ production in the Dry Reforming of Methane (DRM) process. The carbon formed is primarily multi-walled carbon nanotubes (MWCNTs), which not only minimize harmful carbon accumulation but also enhance overall catalytic performance. This innovation offers a sustainable solution for carbon management and the conversion of greenhouse gases. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: carbon nanotubes; dry reforming of methane; ceria; zirconia; lanthanum
Funding: Fundamental Research Grant Scheme (FRGS) grant funded by the Ministry of Higher Education of Malaysia, project code: FRGS/1/2019/TK02/UKM/01/2 and industry project code: KK-2020-013

Article Metrics:

  1. Salehi, S., Alavi, S.M., Rezaei, M., Akbari, E., Varbar, M. (2024) Syngas production from dry reforming of glycerol by the NiO/M-Al2O3 catalysts: Effect of various support promoters and various ZrO2 content. J. CO2 Util. 81, 102737. DOI: 10.1016/j.jcou.2024.102737
  2. Kludpantanapan, T., Rattanaamonkulchai, R., Srifa, A., Koo-Amornpattana, W., Chaiwat, W., Sakdaronnarong, C., Charinpanitkul, T., Assabumrungrat, S., Wongsakulphasatch, S., Aieamsam-Aung, P., et al. (2022) Development of CoMo-X catalysts for production of H2 and CNTs from biogas by integrative process. J. Environ. Chem. Eng. 10, 107901. DOI: 10.1016/j.jece.2022.107901
  3. Bahari, N.A., Wan Isahak, W.N.R., Masdar, M.S., Yaakob, Z. (2019) Clean hydrogen generation and storage strategies via CO2 utilization into chemicals and fuels: A review. Int. J. Energy Res. 43, 5128–5150. DOI: 10.1002/er.4498
  4. Maziviero, F.V., Melo, D.M.A., Medeiros, R.L.B.A., Silva, J.C.A., Araújo, T.R., Oliveira, Â.A.S., Silva, Y.K.R.O., Melo, M.A.F. (2024) Influence of Mn, Mg, Ce and P promoters on Ni-X/Al2O3 catalysts for dry reforming of methane. J. Energy Inst. 113. DOI: 10.1016/j.joei.2024.101523
  5. Manan, W.N., Wan Isahak, W.N.R., Yaakob, Z. (2022) CeO2-Based Heterogeneous Catalysts in Dry Reforming Methane and Steam Reforming Methane: A Short Review. Catalysts, 12. DOI: 10.3390/catal12050452
  6. Lanre, M.S., Al-fatesh, A.S., Fakeeha, A.H., Kasim, S.O., Ibrahim, A.A., Al-Awadi, A.S., Al-Zahrani, A.A., Abasaeed, A.E., Ayodele, B.V., Khan, M.R., et al. (2022) Catalytic performance of lanthanum promoted Ni/ZrO2 for carbon dioxide reforming of methane. Catalysts, 41, 3899–3912. DOI: 10.1021/acs.iecr.9b02434
  7. Bespalko, Y., Smal, E., Simonov, M., Valeev, K., Fedorova, V., Krieger, T., Cherepanova, S., Ishchenko, A., Rogov, V., Sadykov, V. (2020) Novel ni/ce(ti)zro2catalysts for methane dry reforming prepared in supercritical alcohol media. Energies, 13. DOI: 10.3390/en13133365
  8. Greluk, M., Rotko, M., Turczyniak-Surdacka, S. (2020) Enhanced catalytic performance of La2O3 promoted Co/CeO2 and Ni/CeO2 catalysts for effective hydrogen production by ethanol steam reforming: La2O3 promoted Co(Ni)/CeO2 catalysts in SRE. Renew. Energy, 155, 378–395. DOI: 10.1016/j.renene.2020.03.117
  9. Muraza, O., Galadima, A. (2015) A review on coke management during dry reforming of methane. Int. J. Energy Res. 39, 1196–1216. DOI: 10.1002/er3295
  10. Mallikarjun, G., Sagar, T.V., Swapna, S., Raju, N., Chandrashekar, P., Lingaiah, N. (2020) Hydrogen rich syngas production by bi-reforming of methane with CO2over Ni supported on CeO2-SrO mixed oxide catalysts. Catal. Today, 356, 597–603. DOI: 10.1016/j.cattod.2020.01.005
  11. Arora, S., Prasad, R. (2016) An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts. RSC Adv., 6, 108668–108688. DOI: 10.1039/c6ra20450c
  12. Abdullah, N., Ainirazali, N., Chong, C.C., Razak, H.A., Setiabudi, H.D., Jalil, A.A., Vo, D.V.N. (2020) Influence of impregnation assisted methods of Ni/SBA-15 for production of hydrogen via dry reforming of methane. Int. J. Hydrogen Energy, 45, 18426–18439. DOI: 10.1016/j.ijhydene.2019.09.089
  13. Al-Swai, B.M., Osman, N., Alnarabiji, M.S., Adesina, A.A., Abdullah, B. (2019) Syngas Production via Methane Dry Reforming over Ceria-Magnesia Mixed Oxide-Supported Nickel Catalysts. Ind. Eng. Chem. Res., 58, 539–552. DOI: 10.1021/acs.iecr.8b03671
  14. Al-Timimi, B.A., Yaakob, Z. (2022) Catalysts for the Simultaneous Production of Syngas and Carbon Nanofilaments Via Catalytic Decomposition of Biogas. In (Edited by Maryam Takht Ravanchi) Natural Gas - New Perspectives and Future Developments, DOI: 10.5772/intechopen.101320
  15. Ajayan, P.M., Zhou, O.Z. (2001) Applications of Carbon Nanotubes. Carbon Nanotub., 425, 391–425
  16. Hamouda, H.I., Abdel-Ghafar, H.M., Mahmoud, M.H.H. (2021) Multi-walled carbon nanotubes decorated with silver nanoparticles for antimicrobial applications. J. Environ. Chem. Eng., 9, 105034. DOI: 10.1016/j.jece.2021.105034
  17. Allaedini, G., Tasirin, S.M., Aminayi, P., Yaakob, Z., Meor Talib, M.Z. (2016) Carbon nanotubes via different catalysts and the important factors that affect their production: A review on catalyst preferences. Int. J. Nano Dimens., 7, 186–200, DOI: 10.7508/ijnd.2016.03.002
  18. Filchakova, M. (2023) What are multi walled carbon nanotubes? MWCNT production, properties, and applications Available online: https://tuball.com/articles/multi-walled-carbon-nanotubes (accessed on Nov 10, 2023)
  19. Liao, X.Z., Serquis, A., Jia, Q.X., Peterson, D.E., Zhu, Y.T., Xu, H.F. (2003) Effect of catalyst composition on carbon nanotube growth. Appl. Phys. Lett., 82, 2694–2696. DOI: 10.1063/1.1569655
  20. He, L., Hu, S., Jiang, L., Syed-Hassan, S.S.A., Wang, Y., Xu, K., Su, S., Xiang, J., Xiao, L., Chi, H., et al. (2017) Opposite effects of self-growth amorphous carbon and carbon nanotubes on the reforming of toluene with Ni/Α-Al2O3 for hydrogen production. Int. J. Hydrogen Energy, 42, 14439–14448. DOI: 10.1016/j.ijhydene.2017.04.230
  21. Manan, W.N., Roslam, N., Isahak, W., Yaakob, Z., Samidin, S., Ahmad, N., Latif, N. (2024) Exploring enhanced syngas production via the catalytic performance of metal-doped X-Ni/CeO2 (X = Zr, La, Sr) in the dry reforming of methane. Journal of Chemical Technology & Biotechnology, 99 (11), 2420-2433. DOI: 10.1002/jctb.7732
  22. Świrk, K., Rønning, M., Motak, M., Beaunier, P., Da Costa, P., Grzybek, T. (2019) Ce-and Y-modified double-layered hydroxides as catalysts for dry reforming of methane: On the effect of yttrium promotion. Catalysts, 9, 56. DOI: 10.3390/catal9010056
  23. Shanmugam, V., Zapf, R., Neuberg, S., Hessel, V., Kolb, G. (2017) Effect of ceria and zirconia promotors on Ni/SBA-15 catalysts for coking and sintering resistant steam reforming of propylene glycol in microreactors. Appl. Catal. B Environ., 203, 859–869, DOI: 10.1016/j.apcatb.2016.10.075
  24. Dębek, R., Galvez, M.E., Launay, F., Motak, M., Grzybek, T., Da Costa, P. (2016) Low temperature dry methane reforming over Ce, Zr and CeZr promoted Ni–Mg–Al hydrotalcite-derived catalysts. International Journal of Hydrogen Energy, 41(27), 11616-11623. DOI: 10.1016/j.ijhydene.2016.02.074
  25. Li, X., Liu, X., Hao, J., Li, L., Gao, Y., Gu, Y., Cao, Z., Liu, J. (2022) Strong Metal-Support Interactions of Ni-CeO2 Effectively Improve the Performance of a Molten Hydroxide Direct Carbon Fuel Cell. ACS Omega, 7, 24646–24655. DOI: 10.1021/acsomega.2c02479
  26. Yang, Q.H., Hou, P.X., Cheng, H.M. (2001) Adsorption and capillarity of nitrogen in inside channel of carbon nanotubes. Chemical Physics Letters, 345 (1-2), 18–24. DOI: 10.1016/S0009-2614(01)00848-X
  27. Ou, Z., Ran, J., Qiu, H., Huang, X., Qin, C. (2023) Uncovering the effect of surface basicity on the carbon deposition of Ni/CeO2 catalyst modified by oxides in DRM. Fuel, 335, 126994. DOI: 10.1016/j.fuel.2022.126994
  28. Catalysts, N., Łamacz, A., Jag, P., Stawowy, M. (2020) Dry Reforming of Methane over CNT-Supported. Catalysts, 10 (7), 741. DOI: 10.3390/catal10070741
  29. Abbaslou, R.M., Vosoughi, V., Dalai, A.K. (2017) Comparison of nitrogen adsorption and transmission electron microscopy analyses for structural characterization of carbon nanotubes. Appl. Surf. Sci., 419, 817–825. DOI: 10.1016/j.apsusc.2017.04.253
  30. Rather, S.U. (2020) Preparation, characterization and hydrogen storage studies of carbon nanotubes and their composites: A review. Int. J. Hydrogen Energy, 45, 4653–4672. DOI: 10.1016/j.ijhydene.2019.12.055
  31. Li, Y.S., Liao, J.L., Wang, S.Y., Chiang, W.H. (2016) Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons. Sci. Rep., 6, 1–12. DOI: 10.1038/srep22755
  32. Pudukudy, M., Yaakob, Z., Akmal, Z.S. (2015) Direct decomposition of methane over SBA-15 supported Ni, Co and Fe based bimetallic catalysts. Appl. Surf. Sci., 330, 418–430. DOI: 10.1016/j.apsusc.2015.01.032
  33. Sidik, S.M., Triwahyono, S., Jalil, A.A., Aziz, M.A.A., Fatah, N.A.A., Teh, L.P. (2016) Tailoring the properties of electrolyzed Ni/mesostructured silica nanoparticles (MSN) via different Ni-loading methods for CO2 reforming of CH4. J. CO2 Util., 13, 71–80. DOI: 10.1016/j.jcou.2015.12.004
  34. Smal, E., Bespalko, Y., Arapova, M., Fedorova, V., Valeev, K., Eremeev, N., Sadovskaya, E., Krieger, T., Glazneva, T., Sadykov, V., et al. (2022) Carbon Formation during Methane Dry Reforming over Ni-Containing Ceria-Zirconia Catalysts. Nanomaterials, 12, 3676. DOI: 10.3390/nano12203676
  35. Baharudin, L., Rahmat, N., Othman, N.H., Shah, N., Syed-Hassan, S.S.A. Formation, control, and elimination of carbon on Ni-based catalyst during CO2 and CH4 conversion via dry reforming process: A review. J. CO2 Util., 61, 102050. DOI: 10.1016/j.jcou.2022.102050
  36. Hussien, A.G.S.. Polychronopoulou, K. (2022) A Review on the Different Aspects and Challenges of the Dry Reforming of Methane (DRM) Reaction. Nanomaterials, 12, 3400. DOI: 10.3390/nano12193400
  37. Pudukudy, M., Yaakob, Z., Takriff, M.S. (2016) Methane decomposition into COx free hydrogen and multiwalled carbon nanotubes over ceria, zirconia and lanthana supported nickel catalysts prepared via a facile solid state citrate fusion method. Energy Convers. Manag., 126, 302–315. DOI: 10.1016/j.enconman.2016.08.006
  38. Figueira, C.E., Moreira, P.F., Giudici, R., Alves, R.M.B., Schmal, M. (2018) Nanoparticles of Ce, Sr, Co in and out the multi-walled carbon nanotubes applied for dry reforming of methane. Appl. Catal. A Gen., 550, 297–307. DOI: 10.1016/j.apcata.2017.11.019
  39. Kong, J., Li, R., Wang, F., Chen, P., Liu, H., Liu, G., Lv, W. (2018) Sulfate radical-induced transformation of trimethoprim with CuFe2O4/MWCNTs as a heterogeneous catalyst of peroxymonosulfate: mechanisms and reaction pathways. RSC Advances, 8, 24787–24795. DOI: 10.1039/c8ra04103b
  40. Abdel Karim Aramouni, N., Zeaiter, J., Kwapinski, W., Ahmad, M.N. (2017) Thermodynamic analysis of methane dry reforming: Effect of the catalyst particle size on carbon formation. Energy Convers. Manag., 150, 614–622. DOI: 10.1016/j.enconman.2017.08.056
  41. Álvarez, A., Borges, M., Corral-Pérez, J.J., Olcina, J.G., Hu, L., Cornu, D., Huang, R., Stoian, D., Urakawa, A. (2017) CO2 Activation over Catalytic Surfaces. ChemPhysChem, 18, 3135–3141. DOI: 10.1002/cphc.201700782
  42. Kumanek, B., Stando, G., Wróbel, P.S., Krzywiecki, M., Janas, D. (2019) Thermoelectric properties of composite films from multi-walled carbon nanotubes and ethyl cellulose doped with heteroatoms. Synth. Met., 257, 116190. DOI: 10.1016/j.synthmet.2019.116190
  43. Figueira, C.E., Moreira, P.F., Giudici, R., Alves, R.M.B., Schmal, M. (2018) Nanoparticles of Ce, Sr, Co in and out the multi-walled carbon nanotubes applied for dry reforming of methane. Appl. Catal. A Gen., 550, 297–307. DOI: 10.1016/j.apcata.2017.11.019
  44. Isahak, W.N.R.W., Hasan, S.Z., Ramli, Z.A.C., Ba-Abbad, M.M., Yarmo, M.A. (2018) Enhanced physical and chemical adsorption of carbon dioxide using bimetallic copper–magnesium oxide/carbon nanocomposite. Res. Chem. Intermed., 44, 829–841. DOI: 10.1007/s11164-017-3138-6
  45. Wei, Y., Song, M., Yu, L., Meng, F. (2021) CO2 reforming of methane over carbon fiber-lanthanum oxide supported bimetallic nickel-cobalt catalysts: Kinetic and mechanistic studies. Process Saf. Environ. Prot., 145, 236–246. DOI: 10.1016/j.psep.2020.08.007
  46. Taufiq-Yap, Y.H., Sudarno, Rashid, U., Zainal, Z. (2013) CeO2-SiO2 supported nickel catalysts for dry reforming of methane toward syngas production. Appl. Catal. A Gen., 468, 359–369, DOI: 10.1016/j.apcata.2013.09.020
  47. Yuan, W., Wang, Y., Zou, Y., Tan, W., Hou, W., Zheng, L., Wu, F., Zhou, L. (2016) Dry Reforming of Methane for Syngas Production Over Well-Dispersed Mesoporous NiCe0.5Zr0.5O3 with Ni Nanoparticles Immobilized. Catal. Letters, 146, 1663–1673, DOI: 10.1007/s10562-016-1791-9
  48. Marinho, A.L.A., Rabelo-Neto, R.C., Epron, F., Toniolo, F.S., Noronha, F.B., Bion, N. (2022) Effect of Metal Dopant on the Performance of Ni@CeMeO2 Embedded Catalysts (Me = Gd, Sm and Zr) for Dry Reforming of Methane. Methane, 1, 300–319. DOI: 10.3390/methane1040023
  49. Zhang, F., Liu, Z., Chen, X., Rui, N., Betancourt, L.E., Lin, L., Xu, W., Sun, C.J., Abeykoon, A.M.M., Rodriguez, J.A., et al. (2020) Effects of Zr Doping into Ceria for the Dry Reforming of Methane over Ni/CeZrO2 Catalysts: In Situ Studies with XRD, XAFS, and AP-XPS. ACS Catal., 10, 3274–3284. DOI: 10.1021/acscatal.9b04451

Last update:

No citation recorded.

Last update:

No citation recorded.