skip to main content

PbO2/rGO Electrode as a Superior and Efficient Anode in Electrocatalytic Degradation of Safranine-O

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Yogyakarta 55281, Indonesia

2Department of Medical Laboratory Technology, Faculty of Health Sciences, Yogyakarta ‘Aisyiyah University, Yogyakarta, Indonesia

Received: 14 Aug 2024; Revised: 6 Oct 2024; Accepted: 7 Oct 2024; Available online: 11 Oct 2024; Published: 30 Oct 2024.
Editor(s): Bunjerd Jongsomjit
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The electrocatalytic degradation method with PbO2/rGO electrode (anode) was chosen to treat Safranine-O waste because it was cheap and environmentally friendly. This research aimed to study the electrocatalytic efficiency of PbO2/rGO working electrode in Safranine-O removal. In this research, rGO and PbO2/rGO electrodes were synthesized and applied to Safranine-O removal through electrochemical degradation. The characterization results of the morphology of rGO are in the form of a layered structure and have the atomic composition of C (82.87%) and O (17.13%). The characterization results of PbO2/rGO are uniform particles with gaps/pores that appear relatively large. The rGO particles in the form of sheets (layers) seem to be distributed on the surface of PbO2.  PbO2/rGO electrode has the atomic composition of C (87.24%), O (9.03), and Pb (3.73). The application of PbO2/rGO anode to the electrochemical degradation of Safranine-O showed good performance. It was able to perform dye removal (DE%), as well as a decrease in BOD and COD values up to >95% within 10 minutes at a concentration of 20 ppm. Application on real waste also showed the ability of dye removal, COD, and BOD reduction up to >95%. Coating or modifying the PbO2 anode with rGO can reduce the dissolution of Pb2+ ions in the solution during the electrochemical degradation. This study concluded that the PbO2/rGO electrode has improved the efficiency in Safranine-O degradation. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Waste; Electrochemical degradation; Dye; rGO; Lead Dioxide
Funding: Ministry of Education, Culture, Research and Technology of the Republic of Indonesia under contract BPI 00168/J5.2.3./BPI.06/9/2022

Article Metrics:

  1. El-Kemary, M., Abdel-Moneam, Y., Madkour, M., El-Mehasseb, I. (2011). Enhanced photocatalytic degradation of Safranin-O by heterogeneous nanoparticles for environmental applications. Journal of Luminescence, 131(4), 570–576. DOI: 10.1016/j.jlumin.2010.10.025
  2. Pathania, D., Dhar, S., Sharma, A., Srivastava, A.K. (2021). Decolourization of noxious safranin-T from waste water using Mangifera indica as precursor. Environmental Sustainability, 4(2), 355–364. DOI: 10.1007/s42398-020-00130-0
  3. Liu, B., Ren, B., Xia, Y., Yang, Y., Yao, Y. (2020). Electrochemical degradation of safranine T in aqueous solution by Ti/PbO2 electrodes. Canadian Journal of Chemistry, 98(1), 7–14. DOI: 10.1139/cjc-2019-0143
  4. Eskikaya, O., Gun, M., Bouchareb, R., Bilici, Z., Dizge, N., Ramaraj, R., Balakrishnan, D. (2022). Photocatalytic activity of calcined chicken eggshells for Safranin and Reactive Red 180 decolorization. Chemosphere, 304, DOI: 10.1016/j.chemosphere.2022.135210
  5. Granda-Ramírez, C.F., Hincapié-Mejía, G.M., Serna-Galvis, E.A., Torres-Palma, R.A. (2017). Degradation of Recalcitrant Safranin T Through an Electrochemical Process and Three Photochemical Advanced Oxidation Technologies. Water, Air, and Soil Pollution, 228(11), DOI: 10.1007/s11270-017-3611-2
  6. Kiruthika, T., Poonkothai, M., Kalaiarasi, K., Ajarem, J.S., Allam, A.A., Khim, J.S., Sudhakar, C., Selvankumar, T., Alaguprathana, M. (2022). Decolorization of safranin using Fissidens species and its ecotoxicological assessments: An in vitro and in silico approach. Environmental Research, 211 DOI: 10.1016/j.envres.2022.113108
  7. Li, W., Xie, Z., Xue, S., Ye, H., Liu, M., Shi, W., Liu, Y. (2021). Studies on the adsorption of dyes, Methylene blue, Safranin T, and Malachite green onto Polystyrene foam. Separation and Purification Technology, 276 DOI: 10.1016/j.seppur.2021.119435
  8. Shariati, S., Faraji, M., Yamini, Y., Rajabi, A.A. (2011). Fe3O4 magnetic nanoparticles modified with sodium dodecyl sulfate for removal of safranin O dye from aqueous solutions. Desalination, 270(1–3), 160–165. DOI: 10.1016/j.desal.2010.11.040
  9. Hamitouche, A., Benammar, S., Haffas, M., Boudjemaa, A., Bachari, K. (2016). Biosorption of methyl violet from aqueous solution using Algerian biomass. Desalination and Water Treatment, 57(34), 15862–15872. DOI: 10.1080/19443994.2015.1077476
  10. Wang, X.Q., Wang, F.P., Zeng, X.H., Zhang, Q., Zhang, W., Le, J.Y., Yang, S.Z. (2015). Decolorization of methyl violet in simulated wastewater by dielectric barrier discharge plasma. Japanese Journal of Applied Physics, 54(5), DOI: 10.7567/JJAP.54.056201
  11. Astuti, W., Sulistyaningsih, T., Maksiola, M. (2017). Equilibrium and kinetics of adsorption of methyl violet from aqueous solutions using modified Ceiba pentandra sawdust. Asian Journal of Chemistry, 29(1), 133–138. DOI: 10.14233/ajchem.2017.20158
  12. Rahchamani, J., Mousavi, H.Z., Behzad, M. (2011). Adsorption of methyl violet from aqueous solution by polyacrylamide as an adsorbent: Isotherm and kinetic studies. Desalination, 267(2–3), 256–260. DOI: 10.1016/j.desal.2010.09.036
  13. Beveridge, T.J. (2001). Use of the Gram stain in microbiology. Biotechnic and Histochemistry, 76(3), 111–118. DOI: 10.1080/bih.76.3.111.118
  14. Becerra, S.C., Roy, D.C., Sanchez, C.J., Christy, R.J., Burmeister, D.M. (2016). An optimized staining technique for the detection of Gram positive and Gram negative bacteria within tissue. BMC Research Notes, 9(1), DOI: 10.1186/s13104-016-1902-0
  15. Hayat, K., Gondal, M.A., Khaled, M.M., Yamani, Z.H., Ahmed, S. (2011). Laser induced photocatalytic degradation of hazardous dye (Safranin-O) using self synthesized nanocrystalline WO3. Journal of Hazardous Materials, 186(2–3), 1226–1233. DOI: 10.1016/j.jhazmat.2010.11.133
  16. do Vale-Júnior, E., da Silva, D.R., Fajardo, A.S., Martínez-Huitle, C.A. (2018). Treatment of an azo dye effluent by peroxi-coagulation and its comparison to traditional electrochemical advanced processes. Chemosphere, 204, 548–555. DOI: 10.1016/j.chemosphere.2018.04.007
  17. Setianingrum, N.P., Prasetya, A., Sarto, D. (2017). Pengurangan Zat Warna Remazol Red Rb Menggunakan Metode Elektrokoagulasi secara Batch. Jurnal Rekayasa Proses, 11(2), 78–85. DOI: 10.22146/jrekpros.26900
  18. Bhatia, D., Sharma, N.R., Singh, J., Kanwar, R.S. (2017). Biological methods for textile dye removal from wastewater: A review. Critical Reviews in Environmental Science and Technology, 47(19), 1836–1876. DOI: 10.1080/10643389.2017.1393263
  19. Bernal-Martínez, L.A., Barrera-Díaz, C., Solís-Morelos, C., Natividad, R. (2010). Synergy of electrochemical and ozonation processes in industrial wastewater treatment. Chemical Engineering Journal, 165(1), 71–77. DOI: 10.1016/j.cej.2010.08.062
  20. Zhuo, Q., Luo, M., Guo, Q., Yu, G., Deng, S., Xu, Z., Yang, B., Liang, X. (2016). Electrochemical Oxidation of Environmentally Persistent Perfluorooctane Sulfonate by a Novel Lead Dioxide Anode. Electrochimica Acta, 213, 358–367. DOI: 10.1016/j.electacta.2016.07.005
  21. Yusbarina, Y., Roto, R., Triyana, K. (2021). Hydroxyl functionalized graphene as a superior anode material for electrochemical oxidation of methylene blue. Rasayan Journal of Chemistry, 14(2), 1140–1147. DOI: 10.31788/RJC.2021.1426180
  22. Sukarta, I.N., Kadek, N., Lusiani, S. (2008). Adsorpsi Zat Warna Azo Jenis Remazol Brilliant Blue Oleh Limbah Daun Ketapang ( Terminalia Catappa L.). In: Prosiding Seminar Nasional Kimia UNY 2017 Sinergi Penelitian dan Pembelajaran untuk Mendukung Pengembangan Literasi Kimia pada Era Global Ruang Seminar FMIPA UNY, 14 Oktober 2017. pp. 311–316
  23. Isarain-Chávez, E., Baró, M.D., Rossinyol, E., Morales-Ortiz, U., Sort, J., Brillas, E., Pellicer, E. (2017). Comparative electrochemical oxidation of methyl orange azo dye using Ti/Ir-Pb, Ti/Ir-Sn, Ti/Ru-Pb, Ti/Pt-Pd and Ti/RuO2 anodes. Electrochimica Acta, 244, 199–208. DOI: 10.1016/j.electacta.2017.05.101
  24. Garcia-Segura, S., Ocon, J.D., Chong, M.N. (2018). Electrochemical oxidation remediation of real wastewater effluents — A review. Process Safety and Environmental Protection, 113, 48–67. DOI: 10.1016/j.psep.2017.09.014
  25. Singh, S., Lien, S., Chandra, V., Devidas, A. (2016). Journal of Environmental Chemical Engineering Comparative study of electrochemical oxidation for dye degradation : Parametric optimization and mechanism identification. Biochemical Pharmacology, 4(3), 2911–2921. DOI: 10.1016/j.jece.2016.05.036
  26. Shmychkova, O., Luk’Yanenko, T., Dmirtikova, L., Velichenko, A. (2019). Modified lead dioxide for organic wastewater treatment: Physicochemical properties and electrocatalytic activity. Journal of the Serbian Chemical Society, 84(2), 187–198. DOI: 10.2298/JSC180712091S
  27. Radjenovic, J., Sedlak, D.L. (2015). Challenges and Opportunities for Electrochemical Processes as Next-Generation Technologies for the Treatment of Contaminated Water. Environmental Science and Technology, 49(19), 11292–11302. DOI: 10.1021/acs.est.5b02414
  28. Liu, S., Wang, J., Zeng, J., Ou, J., Li, Z., Liu, X., Yang, S. (2010). “Green” electrochemical synthesis of Pt/graphene sheet nanocomposite film and its electrocatalytic property. Journal of Power Sources, 195(15), 4628–4633. DOI: 10.1016/j.jpowsour.2010.02.024
  29. Clematis, D., Cerisola, G., Panizza, M. (2017). Electrochemical oxidation of a synthetic dye using a BDD anode with a solid polymer electrolyte. Electrochemistry Communications, 75, 21–24. DOI: 10.1016/j.elecom.2016.12.008
  30. Soumya, M.S., Binitha, G., Praveen, P., Subramanian, K.R.V., Lee, Y.S., Shantikumar Nair, V., Sivakumar, N. (2015). Electrochemical performance of PbO2 and PbO2-CNT composite electrodes for energy storage devices. Journal of Nanoscience and Nanotechnology, 15(1), 703–708. DOI: 10.1166/jnn.2015.9172
  31. Li, W., Yang, H., Liu, Q. (2017). Hydrothermal Synthesis of PbO2/RGO Nanocomposite for Electrocatalytic Degradation of Cationic Red X-GRL. Journal of Nanomaterials, 2017, DOI: 10.1155/2017/1798706
  32. Nejati-Moghadam, L., Gholamrezaei, S., Salavati-Niasari, M., Esmaeili-Bafghi-Karimabad, A. (2017). Hydrothermal synthesis and characterization of lead oxide nanocrystal in presence of tetradentate Schiff-base and degradation investigation of organic pollutant in waste water. Journal of Materials Science: Materials in Electronics, 28(13), 9919–9926. DOI: 10.1007/s10854-017-6748-2
  33. Awad, H.S., Galwa, N.A. (2005). Electrochemical degradation of Acid Blue and Basic Brown dyes on Pb/PbO2 electrode in the presence of different conductive electrolyte and effect of various operating factors. Chemosphere, 61(9), 1327–1335. DOI: 10.1016/j.chemosphere.2005.03.054
  34. Gaber, M., Abu Ghalwa, N., Khedr, A.M., Salem, M.F. (2013). Electrochemical degradation of reactive yellow 160 dye in real wastewater using C/PbO2, Pb+Sn/PbO2+SnO, and Pb/PbO2 modified electrodes. Journal of Chemistry, 2013, 1–10. DOI: 10.1155/2013/691763
  35. Widodo, D.S., Suyati, L., Gunawan, G., Haris, A. (2018). Decolorization of Artificial Waste Remazol Black B using Electrogenerated Reactive Spesies. Jurnal Kimia Sains dan Aplikasi, 21(1), 29–33. DOI: 10.14710/jksa.21.1.29-33
  36. Bi, H., Yu, C., Gao, W., Cao, P. (2014). Physicochemical Characterization of Electrosynthesized PbO2 Coatings: The Effect of Pb2+ Concentration and Current Density. Journal of The Electrochemical Society, 161(6), D327–D332. DOI: 10.1149/2.032406jes
  37. Irikura, K., Bocchi, N., Rocha-Filho, R.C., Biaggio, S.R., Iniesta, J., Montiel, V. (2016). Electrodegradation of the Acid Green 28 dye using Ti/β-PbO2 and Ti-Pt/β-PbO2 anodes. Journal of Environmental Management, 183, 306–313. DOI: 10.1016/j.jenvman.2016.08.061
  38. Jiani, L., Zhicheng, X., Hao, X., Dan, Q., Zhengwei, L., Wei, Y., Yu, W. (2020). Pulsed electrochemical oxidation of acid Red G and crystal violet by PbO2 anode. Journal of Environmental Chemical Engineering, 8(3), 2–10. DOI: 10.1016/j.jece.2020.103773
  39. Ghalwa, N.M.A., Zaggout, F.R. (2006). Electrodegradation of methylene blue dye in water and wastewater using lead oxide/titanium modified electrode. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 41(10), 2271–2282. DOI: 10.1080/10934520600872888
  40. Murthy, U.N., Rekha, H.B., Bhavya, J.G. (2011). Performance of Electrochemical Oxidation in Treating Textile Dye Wastewater by Stainless Steel Anode. International Journal of Environmental Science and Development, 2(6), 483–487. DOI: 10.7763/ijesd.2011.v2.174
  41. Jin, X., Zhang, H., Wang, X., Zhou, M. (2012). An improved multi-anode contact glow discharge electrolysis reactor for dye discoloration. Electrochimica Acta, 59, 474–478. DOI: 10.1016/j.electacta.2011.11.001
  42. Shmychkova, O., Luk’Yanenko, T., Dmirtikova, L., Velichenko, A. (2019). Modified lead dioxide for organic wastewater treatment: Physicochemical properties and electrocatalytic activity. Journal of the Serbian Chemical Society, 84(2), 187–198. DOI: 10.2298/jsc180712091S
  43. Duan, X., Zhao, C., Liu, W., Zhao, X., Chang, L. (2017). Fabrication of a novel PbO2 electrode with a graphene nanosheet interlayer for electrochemical oxidation of 2-chlorophenol. Electrochimica Acta, 240, 424–436. DOI: 10.1016/j.electacta.2017.04.114
  44. Shetti, N.P., Malode, S.J., Malladi, R.S., Nargund, S.L., Shukla, S.S., Aminabhavi, T.M. (2019). Electrochemical detection and degradation of textile dye Congo red at graphene oxide modified electrode. Microchemical Journal, 146, 387–392. DOI: 10.1016/j.microc.2019.01.033
  45. Yan, L., Lin, M., Zeng, C., Chen, Z., Zhang, S., Zhao, X., Wu, A., Wang, Y., Dai, L., Qu, J., Guo, M., Liu, Y. (2012). Electroactive and biocompatible hydroxyl- functionalized graphene by ball milling. Journal of Materials Chemistry, 22(17), 8367–8371. DOI: 10.1039/c2jm30961k
  46. Ahmad, F., Zahid, M., Jamil, H., Khan, M.A., Atiq, S., Bibi, M., Shahbaz, K., Adnan, M., Danish, M., Rasheed, F., Tahseen, H., Shabbir, M.J., Bilal, M., Samreen, A. (2023). Advances in graphene-based electrode materials for high-performance supercapacitors: A review. Journal of Energy Storage, 72, 108731, 1–17. DOI: 10.1016/j.est.2023.108731
  47. Tene, T., Bellucci, S., Guevara, M., Romero, P., Guapi, A., Gahramanli, L., Straface, S., Caputi, L.S., Vacacela Gomez, C. (2024). Role of Graphene Oxide and Reduced Graphene Oxide in Electric Double-Layer Capacitors: A Systematic Review. Batteries, 10(7), 256. DOI: 10.3390/batteries10070256
  48. Yang, J., Gunasekaran, S. (2013). Electrochemically reduced graphene oxide sheets for use in high performance supercapacitors. Carbon, 51(1), 36–44. DOI: 10.1016/j.carbon.2012.08.003
  49. Lee, X.J., Hiew, B.Y.Z., Lai, K.C., Lee, L.Y., Gan, S., Thangalazhy-Gopakumar, S., Rigby, S. (2019). Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. Journal of the Taiwan Institute of Chemical Engineers, 98, 163–180. DOI: 10.1016/j.jtice.2018.10.028
  50. Bo, Z., Shuai, X., Mao, S., Yang, H., Qian, J., Chen, J., Yan, J., Cen, K. (2014). Green preparation of reduced graphene oxide for sensing and energy storage applications. Scientific Reports, 4(4864), 1–8. DOI: 10.1038/srep04684
  51. Ahmad, S., Ahmad, A., Khan, S., Ahmad, S., Khan, I., Zada, S., Fu, P. (2019). Algal extracts based biogenic synthesis of reduced graphene oxides (rGO) with enhanced heavy metals adsorption capability. Journal of Industrial and Engineering Chemistry, 72, 117–124. DOI: 10.1016/j.jiec.2018.12.009
  52. Qasim, S., Zafar, A., Saif, M.S., Ali, Z., Nazar, M., Waqas, M., Haq, A.U., Tariq, T., Hassan, S.G., Iqbal, F., Shu, X.G., Hasan, M. (2020). Green synthesis of iron oxide nanorods using Withania coagulans extract improved photocatalytic degradation and antimicrobial activity. Journal of Photochemistry and Photobiology B: Biology, 204(1), 1–11. DOI: 10.1016/j.jphotobiol.2020.111784
  53. Alam, S.N., Sharma, N., Kumar, L. (2017). Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO)*. Graphene, 06(01), 1–18. DOI: 10.4236/graphene.2017.61001
  54. Shahriary, L., Athawale, A.A. (2014). Graphene Oxide Synthesized by using Modified Hummers Approach. International Journal of Renewable Energy and Environmental Engineering, 02(01), 1–8. DOI: 10.1016/j.jiec.2014.12.009
  55. Fahrul, M., Hanifah, R., Jaafar, J., Aziz, M., Fauzi Ismail, A., Rahman, M.A., Hafiz, M., Othman, D. (2015). Synthesis of Graphene Oxide Nanosheets via Modified Hummers’ Method and Its Physicochemical Properties. Jurnal Teknologi, 74, 2180–3722. DOI: 10.1039/c6ra02928k
  56. Shams, S.S., Zhang, L.S., Hu, R., Zhang, R., Zhu, J. (2015). Synthesis of graphene from biomass: A green chemistry approach. Materials Letters, 161, 476–479. DOI: 10.1016/j.matlet.2015.09.022
  57. Geetha Bai, R., Muthoosamy, K., Shipton, F.N., Pandikumar, A., Rameshkumar, P., Huang, N.M., Manickam, S. (2016). The biogenic synthesis of a reduced graphene oxide-silver (RGO-Ag) nanocomposite and its dual applications as an antibacterial agent and cancer biomarker sensor. RSC Advances, 6(43), 36576–36587. DOI: 10.1039/c6ra02928k
  58. Fauzi Kurniawan, A. (2016). Sintesis Komposit Grafena Oksida Terduksi (rGO) Hasil Pembakaran Tempurung Kelapa Tua dengan Seng Oksida (ZnO) sebagai Superkapasitor. Skripsi. Surabaya: Program Studi Fisika; Institut Teknologi Sepuluh Nopember
  59. Agus Putri, N., Arifin, Z., Supardi, I. (2023). Sintesis dan Karakterisasi Graphene Oxide (GO) dari Bahan Alam Tempurung Kelapa. Jurnal Inovasi Fisika Indonesia (IFI), 12, 47–55. DOI: 10.26740/ifi.v12n2.p47-55
  60. Sachdeva, H. (2020). Recent advances in the catalytic applications of GO/rGO for green organic synthesis. Green Processing and Synthesis, 9(1), 515–537. DOI: 10.1515/gps-2020-0055
  61. Wang, M., Oh, J., Ghosh, T., Hong, S., Nam, G., Hwang, T., Nam, J. Do (2014). An interleaved porous laminate composed of reduced graphene oxide sheets and carbon black spacers by in situ electrophoretic deposition. RSC Advances, 4(7), 3284–3292. DOI: 10.1039/c3ra45979a
  62. Yusbarina, Y., Roto, R., Triyana, K., Riau, S.K., Indonesia, R. (2021). Stainless Steel/Hydroxyl Functionalized Graphene Electrode for Electrochemical Oxidation of Methyl Orange, Key Engineering Materials, 884(1), 32-38. DOI: 10.31788/RJC.2021.1426180
  63. Fatimah, I., Ramanda, G.D., Sagadevan, S., Suratno, Tamyiz, M., Doong, R. an (2024). One-pot synthesis of nickel nanoparticles-embedded biochar and insight on adsorption, catalytic oxidation and photocatalytic oxidation of dye. Case Studies in Chemical and Environmental Engineering, 10(0), 1–12. DOI: 10.1016/j.cscee.2024.100767
  64. Nuraini, E., Fauziah, T., Lestari, F. (2019). Determination of BOD And COD Values of Inlet Waste Liquid Laboratory of Physical Testing ATK Polytechnic Yogyakarta. Integrated Lab Journal, 07(02) DOI: 10.5281/zenodo.3490306
  65. Hait, M., Jaiswal, S. (2016). Removal of Water Pollutants from Industrial Waste Water of Korba Area by Bio-Adsorbents. Journal of Scientific Letter, 1(3), 223–229. DOI: 10.15294/ijcs.v3i1.2866
  66. Samarghandi, M.R., Dargahi, A., Shabanloo, A., Nasab, H.Z., Vaziri, Y., Ansari, A. (2020). Electrochemical degradation of methylene blue dye using a graphite doped PbO2 anode: Optimization of operational parameters, degradation pathway and improving the biodegradability of textile wastewater. Arabian Journal of Chemistry, 13(8), 6847–6864. DOI: 10.1016/j.arabjc.2020.06.038
  67. Shi, W., Fan, H., Ai, S., Zhu, L. (2015). Preparation of fluorescent graphene quantum dots from humic acid for bioimaging application. New Journal of Chemistry, 39(9), 7054–7059. DOI: 10.1039/c5nj00760g
  68. Yusbarina (2021). Sintesis, Karakterisasi, dan Aplikasi Elektroda Pb/PbO2/rGO dan SS/G-OH pada elektrodegradasi Methylene Blue dan Methyl Orange. PhD Disertasi, 1–99. DOI: DepartemenKimia,UniversitasGadjahMada
  69. Kozyatnyk, I., Latham, K.G., Jansson, S. (2019). Valorization of Humic Acids by Hydrothermal Conversion into Carbonaceous Materials: Physical and Functional Properties. ACS Sustainable Chemistry and Engineering, 7(2), 2585–2592. DOI: 10.1021/acssuschemeng.8b05614
  70. Soman, V., Vishwakarma, K., Poddar, M.K. (2023). Ultrasound assisted synthesis of polymer nanocomposites: a review. Journal of Polymer Research, 30(11), 3–15. DOI: 10.1007/s10965-023-03786-4
  71. Setiadji, S., Nuryadin, B.W., Ramadhan, H., Sundari, C.D.D., Sudiarti, T., Supriadin, A., Ivansyah, A.L. (2018). Preparation of reduced Graphene Oxide (rGO) assisted by microwave irradiation and hydrothermal for reduction methods. IOP Conference Series: Materials Science and Engineering, 434(1) DOI: 10.1088/1757-899X/434/1/012079
  72. Aprilia Nita (2019). Penggunaan Metode Ultrasonikasi dalam Proses Sintesis rGO dari Tempurung Kelapa. Jurnal Inovasi Fisika Indonesia, 08(1), 8–10. DOI: 10.1039/c6ra02928k
  73. Aryani, T., Aulia, I., Mu’awanah, U. (2023). Kajian Awal Sintesis Reduced Graphene Oxide (rGO) Metode Iradiasi Microwave dan Ultrasonikasi. Jurnal Kolaboratif Sains, 6(8), 1055–1060. DOI: 10.56338/jks.v6i8.3623
  74. Htwe, Y.Z.N., Chow, W.S., Suda, Y., Thant, A.A., Mariatti, M. (2019). Effect of electrolytes and sonication times on the formation of graphene using an electrochemical exfoliation process. Applied Surface Science, 469, 951–961. DOI: 10.1016/j.apsusc.2018.11.029
  75. Aguilar, J.C.S., Lawagon, C.P., Gallawan, J.M.M., Cabotaje, J.G. (2021). Hydroxyl-functionalized graphene from spent batteries as efficient adsorbent for amoxicillin. Chemical Engineering Transactions, 86, 331–336. DOI: 10.3303/CET2186056
  76. Yan, J.A., Chou, M.Y. (2010). Oxidation functional groups on graphene: Structural and electronic properties. Physical Review B - Condensed Matter and Materials Physics, 82(12), 21–24. DOI: 10.1103/PhysRevB.82.125403
  77. Ruidíaz-Martínez, M., Álvarez, M.A., López-Ramón, M.V., Cruz-Quesada, G., Rivera-Utrilla, J., Sánchez-Polo, M. (2020). Hydrothermal synthesis of RGO-TiO2 composites as high-performance UV photocatalysts for ethylparaben degradation. Catalysts, 10(5), 1–25. DOI: 10.3390/catal10050520
  78. Intifadhah, S.H., Rohmawati, L., Setyarsih, W., Tukiran, T. (2018). The Effect of rGO Mass Composition on the Performance of Activated Carbon/rGO Supercapacitor Electrode Based on Coconut Shell (Cocos nucifera). In: Journal of Physics: Conference Series. Institute of Physics Publishing, DOI: 10.1088/1742-6596/1108/1/012045
  79. Thema, F.T., Moloto, M.J., Dikio, E.D., Nyangiwe, N.N., Kotsedi, L., Maaza, M., Khenfouch, M. (2013). Synthesis and characterization of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide. Journal of Chemistry, 3, 1–7. DOI: 10.1155/2013/150536
  80. Xiang, X., Zhu, Y., Gao, C., Du, H., Guo, C. (2022). Study on the structure of reduced graphene oxide prepared by different reduction methods. Carbon Letters, 32(2), 557–566. DOI: 10.1007/s42823-021-00287-6
  81. Malard, L.M., Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S. (2009). Raman spectroscopy in graphene. Physics Reports, 473(5–6), 51–87. DOI: 10.1016/j.physrep.2009.02.003
  82. Vázquez-Sánchez, P., Rodríguez-Escudero, M.A., Burgos, F.J., Llorente, I., Caballero-Calero, O., González, M.M., Fernández, R., García-Alonso, M.C. (2019). Synthesis of Cu/rGO composites by chemical and thermal reduction of graphene oxide. Journal of Alloys and Compounds, 800, 379–391. DOI: 10.1016/j.jallcom.2019.06.008
  83. Mahmoud, A.E.D. (2020). Eco-friendly reduction of graphene oxide via agricultural byproducts or aquatic macrophytes. Materials Chemistry and Physics, 253, 1–9. DOI: 10.1016/j.matchemphys.2020.123336
  84. Ali, G., Mehmood, A., Ha, H.Y., Kim, J., Chung, K.Y. (2017). Reduced graphene oxide as a stable and high-capacity cathode material for Na-ion batteries. Scientific Reports, 7(4), 1–8. DOI: 10.1038/srep40910
  85. He, Z. (2018). Characterisation and Application of Lead Dioxide Electrodeposited from Methanesulfonate Electrolytes. PhD Dissertation, The University of Auckland
  86. Amadelli, R., Velichenko, A.B. (2001). Lead dioxide electrodes for high potential anodic processes. J. Serb. Chem. Soc., 66, 835–845. DOI: 10.2298/jsc0112835a
  87. Smaili, F., Benchettara, A. (2019). Electrocatalytic Efficiency of PbO2 in Water Decontamination. Russian Journal of Electrochemistry, 55(10), 925–932. DOI: 10.1134/S1023193519100082
  88. Behunová, D.M., Gallios, G., Girman, V., Kolev, H., Kaňuchová, M., Dolinská, S., Václavíková, M. (2021). Electrophoretic deposition of graphene oxide on stainless steel substrate. Nanomaterials, 11(7), 1–16. DOI: 10.3390/nano11071779
  89. Chartarrayawade W, Moulton S. E., O. Too C, Wallace G.G (2013). Fabrication of graphene electrodes by electrophoretic deposition and their sinergistic effect with PEDOT and platinum. Chiang Mai J. Sci., 40(4), 750–762. DOI: 10.1039/c6ra02928
  90. Su, Y., Zhitomirsky, I. (2013). Electrophoretic deposition of graphene, carbon nanotubes and composite films using methyl violet dye as a dispersing agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 97–103. DOI: 10.1016/j.colsurfa.2013.06.024
  91. Menéndez, R., Alvarez, P., Botas, C., Nacimiento, F., Alcántara, R., Tirado, J.L., Ortiz, G.F. (2014). Self-organized amorphous titania nanotubes with deposited graphene film like a new heterostructured electrode for lithium ion batteries. Journal of Power Sources, 248, 886–893. DOI: 10.1016/j.jpowsour.2013.10.019
  92. Li, H., Zaviska, F., Liang, S., Li, J., He, L., Yang, H.Y. (2014). A high charge efficiency electrode by self-assembling sulphonated reduced graphene oxide onto carbon fibre: Towards enhanced capacitive deionization. Journal of Materials Chemistry A, 2(10), 3484–3491. DOI: 10.1039/c3ta14322h
  93. Raza, M.A., Ali, A., Ghauri, F.A., Aslam, A., Yaqoob, K., Wasay, A., Raffi, M. (2017). Electrochemical behavior of graphene coatings deposited on copper metal by electrophoretic deposition and chemical vapor deposition. Surface and Coatings Technology, 332, 112–119. DOI: 10.1016/j.surfcoat.2017.06.083
  94. Chen, J., Wu, J., Ge, H., Zhao, D., Liu, C., Hong, X. (2016). Reduced graphene oxide deposited carbon fiber reinforced polymer composites for electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 82, 141–150. DOI: 10.1016/j.compositesa.2015.12.008
  95. Moura, D.C. De, Quiroz, M.A., Silva, D.R. Da, Salazar, R., Martínez-Huitle, C.A. (2016). Electrochemical degradation of Acid Blue 113 dye using TiO2-nanotubes decorated with PbO2 as anode. Environmental Nanotechnology, Monitoring and Management, 5, 13–20. DOI: 10.1016/j.enmm.2015.11.001
  96. Mo, H., Chen, Y., Tang, Y., Li, T., Zhuang, S., Wang, L., Yang, X., Wan, P. (2019). Direct determination of chemical oxygen demand by anodic oxidative degradation of organics at a composite 3-D electrode. Journal of Solid State Electrochemistry, 23, 1571–1579. DOI: 10.1007/s10008-019-04250-4
  97. Rajkumar, K., Muthukumar, M. (2017). Response surface optimization of electro-oxidation process for the treatment of C.I. Reactive Yellow 186 dye: reaction pathways. Applied Water Science, 7(2), 637–652. DOI: 10.1007/s13201-015-0276-0
  98. Ghalwa, N.A., Abu-Shawish, H.M., Alharazeen, H., Tamous, H.M., Al Harazeen, H. (2013). Determination of Electrochemical Degradation of E102 Dye at Lead Dioxide-Doped Carbon Electrodes Using Some Potentiometric and Spectrophotometric Methods. Chemistry Journal, 03(1), 1–6. DOI: 10.1155/2013/691763
  99. Değermenci, G.D. (2021). Removal of reactive azo dye using platinum-coated titanium electrodes with the electro-oxidation process. Desalination and Water Treatment, 218, 436–443. DOI: 10.5004/dwt.2021.26981
  100. Yu, L., Xi, J., Li, M. De, Chan, H.T., Su, T., Phillips, D.L., Chan, W.K. (2012). The degradation mechanism of methyl orange under photo-catalysis of TiO2. Physical Chemistry Chemical Physics, 14(10), 3589–3595. DOI: 10.1039/c2cp23226j
  101. Mukimin, A., Vistanty, H., Zen, N. (2015). Oxidation of textile wastewater using cylinder Ti/β-PbO2 electrode in electrocatalytic tube reactor. Chemical Engineering Journal, 259, 430–437. DOI: 10.1016/j.cej.2014.08.020

Last update:

No citation recorded.

Last update:

No citation recorded.