skip to main content

Study on the Phosphate Compound Adsorption onto MgO-KOH/Biochar Adsorbent as Binding Agent in Diffusive Gradient in Thin Film (DGT) Technique for Bioavailable Phosphate Detection

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Pondok Cina, Beji, Depok City, West Java, 16424, Indonesia

Received: 4 Jul 2024; Revised: 15 Oct 2024; Accepted: 16 Oct 2024; Available online: 18 Oct 2024; Published: 30 Oct 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Phosphate compounds, particularly bioavailable forms like PO₄³⁻, are critical contributors to eutrophication. In this study, MgO-KOH/biochar was used as a binding agent in the Diffusive Gradient in Thin Films (DGT) technique to enhance phosphate detection. The adsorbent was synthesized from biochar derived from palm oil waste, activated with KOH to increase surface area, and combined with MgO for enhanced adsorption efficiency. The adsorption process followed a pseudo-second-order kinetic model, indicating that chemical interactions dominated the adsorption mechanism. Under different pH levels and phosphate concentrations, the material showed a good selectivity for orthophosphate, achieving an adsorption capacity of approximately 100 mg/g. Characterization via FTIR, XRD, and SAA confirmed the successful synthesis of MgO-KOH/biochar and its structural properties, which contributed to its performance. Additionally, the MgO-KOH/biochar DGT device demonstrated better efficiency in adsorbing PO₄³⁻ compared to conventional ferrihydrite-based DGT systems, positioning it as a highly effective tool for monitoring bioavailable phosphates in aquatic environments. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: DGT; Bioavailable Phosphate; MgO-KOH/biochar; Empty Fruit Bunches (EFB) of Palm Tree
Funding: Faculty of Mathematics and Sciences, University of Indonesia under contract PKS-056/UN2.F3.D/PPM.00.02/2024

Article Metrics:

  1. Tirta, A.P., Saefumillah, A., Foliatini, Herawati (2020). The study of phosphate release from artificial sediment into water body using diffusive gradient in thin film (Dgt) device in oxic condition. Indonesian Journal of Chemistry, 20(2), 395–403. DOI: 10.22146/ijc.43482
  2. Sengupta, S., Pandit, A. (2011). Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer. Water Research, 45(11), 3318–3330. DOI: 10.1016/j.watres.2011.03.044
  3. Egle, L., Rechberger, H., Krampe, J., Zessner, M. (2016). Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Science of The Total Environment, 571, 522–542. DOI: 10.1016/j.scitotenv.2016.07.019
  4. Gao, S., Wang, C., Pei, Y. (2013). Comparison of different phosphate species adsorption by ferric and alum water treatment residuals. Journal of Environmental Sciences (China), 25(5), 986–992. DOI: 10.1016/S1001-0742(12)60113-2
  5. Luo, H., Wang, Y., Wen, X., Cheng, S., Li, J., Lin, Q. (2021). Key roles of the crystal structures of MgO-biochar nanocomposites for enhancing phosphate adsorption. Science of the Total Environment, 766 DOI: 10.1016/j.scitotenv.2020.142618
  6. Septevani, A.A., Rifathin, A., Sari, A.A., Sampora, Y., Ariani, G.N., Sudiyarmanto, Sondari, D. (2020). Oil palm empty fruit bunch-based nanocellulose as a super-adsorbent for water remediation. Carbohydrate Polymers, 229, 115433. DOI: 10.1016/j.carbpol.2019.115433
  7. Abbaci, F., Nait-Merzoug, A., Guellati, O., Harat, A., El Haskouri, J., Delhalle, J., Mekhalif, Z., Guerioune, M. (2022). Bio/KOH ratio effect on activated biochar and their dye based wastewater depollution. Journal of Analytical and Applied Pyrolysis, 162, 105452. DOI: 10.1016/j.jaap.2022.105452
  8. Mestre, A.S., Bexiga, A.S., Proença, M., Andrade, M., Pinto, M.L., Matos, I., Fonseca, I.M., Carvalho, A.P. (2011). Activated carbons from sisal waste by chemical activation with K2CO3: Kinetics of paracetamol and ibuprofen removal from aqueous solution. Bioresource Technology, 102(17), 8253–8260. DOI: 10.1016/j.biortech.2011.06.024
  9. Zhang, H., Davison, W. (1999). Diffusional characteristics of hydrogels used in DGT and DET techniques. Analytica Chimica Acta, 398, 329–340
  10. Zhang, H., Davison, W., Gadi, R., Kobayashi, T. (1998). In situ measurement of dissolved phosphorus in natural waters using DGT. Analytica Chimica Acta, 370, 29–38
  11. Zhang, H., Davison, W., Gadi, R., Kobayashi, T. (1998). In situ measurement of dissolved phosphorus in natural waters using DGT. Analytica Chimica Acta, 370, 29–38
  12. Worsfold, P.J., Gimbert, L.J., Mankasingh, U., Omaka, O.N., Hanrahan, G., Gardolinski, P.C.F.C., Haygarth, P.M., Turner, B.L., Keith-Roach, M.J., McKelvie, I.D. (2005). Sampling, sample treatment and quality assurance issues for the determination of phosphorus species in natural waters and soils. Talanta, 66(2), 273–293. DOI: 10.1016/j.talanta.2004.09.006
  13. Chauhan, A., Shrivastav, A.K., Oudhia, A. (2022). The impact of excessive ethanol on synthesis and characterization of Zinc oxide nanoparticles. Journal of Crystal Growth, 591 DOI: 10.1016/j.jcrysgro.2022.126718
  14. Bokov, D., Turki Jalil, A., Chupradit, S., Suksatan, W., Javed Ansari, M., Shewael, I.H., Valiev, G.H., Kianfar, E. (2021). Nanomaterial by Sol-Gel Method: Synthesis and Application. Advances in Materials Science and Engineering, 2021 DOI: 10.1155/2021/5102014
  15. Liang, H., Wang, W., Liu, H., Deng, X., Zhang, D., Zou, Y., Ruan, X. (2023). Porous MgO-modified biochar adsorbents fabricated by the activation of Mg(NO3)2 for phosphate removal: Synergistic enhancement of porosity and active sites. Chemosphere, 324 DOI: 10.1016/j.chemosphere.2023.138320
  16. Jamil, U., Zeeshan, M., Khan, S.R., Saeed, S. (2023). Synthesis and two-step KOH based activation of porous biochar of wheat straw and waste tire for adsorptive exclusion of chromium (VI) from aqueous solution; thermodynamic and regeneration study. Journal of Water Process Engineering, 53 DOI: 10.1016/j.jwpe.2023.103892
  17. Liang, H., Wang, W., Liu, H., Deng, X., Zhang, D., Zou, Y., Ruan, X. (2023). Porous MgO-modified biochar adsorbents fabricated by the activation of Mg(NO3)2 for phosphate removal: Synergistic enhancement of porosity and active sites. Chemosphere, 324, 138320. DOI: 10.1016/j.chemosphere.2023.138320
  18. Tu, P., Zhang, G., Cen, Y., Huang, B., Li, J., Li, Y., Deng, L., Yuan, H. (2023). Enhanced phosphate adsorption and desorption characteristics of MgO-modified biochars prepared via direct co-pyrolysis of MgO and raw materials. Bioresources and Bioprocessing, 10(1), 49. DOI: 10.1186/s40643-023-00670-3
  19. Xiao, J., Long, H., He, X., Chen, G., Yuan, T., Liu, Y., Xu, Q. (2024). Synthesis of MgO-Coated Canna Biochar and Its Application in the Treatment of Wastewater Containing Phosphorus. Water (Switzerland), 16(6) DOI: 10.3390/w16060873
  20. Xu, S., Li, D., Guo, H., Lu, H., Qiu, M., Yang, J., Shen, F. (2022). Solvent-Free Synthesis of MgO-Modified Biochars for Phosphorus Removal from Wastewater. International Journal of Environmental Research and Public Health, 19(13), 7770. DOI: 10.3390/ijerph19137770
  21. Zhang, M., Gao, B., Yao, Y., Xue, Y., Inyang, M. (2012). Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chemical Engineering Journal, 210, 26–32. DOI: 10.1016/j.cej.2012.08.052
  22. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T. (1985) Reporting Physisorption Data for Gas/Solid System with Special Reference to the Determination of Surface Area and Porosity. International Union of Pure and Applied Chemistry, 57(4), 603–619
  23. Riahi, K., Chaabane, S., Thayer, B. Ben (2017). A kinetic modeling study of phosphate adsorption onto Phoenix dactylifera L. date palm fibers in batch mode. Journal of Saudi Chemical Society, 21, S143–S152. DOI: 10.1016/j.jscs.2013.11.007
  24. Xi, H., Zhang, X., Hua Zhang, A., Guo, F., Yang, Y., Lu, Z., Ying, G., Zhang, J. (2022). Concurrent removal of phosphate and ammonium from wastewater for utilization using Mg-doped biochar/bentonite composite beads. Separation and Purification Technology, 285 DOI: 10.1016/j.seppur.2021.120399
  25. Lima, É.C., Adebayo, M.A., Machado, F.M. (2015). Kinetic and Equilibrium Models of Adsorption. In: Bergmann, C.P., Machado, F.M. (eds) Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications. Cham: Springer International Publishing, pp. 33–69. DOI: 10.1007/978-3-319-18875-1_3
  26. Ye, Y., Jiao, J., Kang, D., Jiang, W., Kang, J., Ngo, H.H., Guo, W., Liu, Y. (2019). The adsorption of phosphate using a magnesia–pullulan composite: Kinetics, equilibrium, and column tests. Environmental Science and Pollution Research, 26(13), 13299–13310. DOI: 10.1007/s11356-019-04858-z
  27. Wang, H., Zhong, D., Xu, Y., Chang, H., Shen, H., Xu, C., Mou, J., Zhong, N. (2022). Enhanced removal of Cr(VI) from aqueous solution by nano- zero-valent iron supported by KOH activated sludge-based biochar. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 651, 129697. DOI: 10.1016/j.colsurfa.2022.129697
  28. Chen, P., Zhou, Y., Xie, Q., Chen, T., Liu, H., Xue, S., Zou, X., Wei, L., Xu, L., Zhang, X., Rosso, K.M. (2022). Phosphate adsorption kinetics and equilibria on natural iron and manganese oxide composites. Journal of Environmental Management, 323 DOI: 10.1016/j.jenvman.2022.116222
  29. Pap, S., Gaffney, P.P.J., Bremner, B., Turk Sekulic, M., Maletic, S., Gibb, S.W., Taggart, M.A. (2022). Enhanced phosphate removal and potential recovery from wastewater by thermo-chemically calcinated shell adsorbents. Science of the Total Environment, 814 DOI: 10.1016/j.scitotenv.2021.152794
  30. Borba, L.L., Cuba, R.M.F., Cuba Terán, F.J., Castro, M.N., Mendes, T.A. (2019). Use of adsorbent biochar from pequi (Caryocar Brasiliense) husks for the removal of commercial formulation of glyphosate from aqueous media. Brazilian Archives of Biology and Technology, 62 DOI: 10.1590/1678-4324-2019180450
  31. Guan, X.H., Chen, G.H., Shang, C. (2005). Competitive adsorption between orthophosphate and other phosphates on aluminum hydroxide. Soil Science, 170(5), 340–349. DOI: 10.1097/01.ss.0000169908.79614.db
  32. Altundogan, H.S., Tumen, F. (2001). Removal of phosphates from aqueous solutions by using bauxite I: Effect of pH on the adsorption of various phosphates. Journal of Chemical Technology and Biotechnology, 77(1), 77–85. DOI: 10.1002/jctb.525
  33. Yang, Y., Zhao, Y.Q., Babatunde, A.O, Wang L, Ren Y X, Han Y (2006). Characteristics and mechanisms of phosphate adsorption on dewatered alum sludge. Separation and Purification Technology, 51(2), 192–200. DOI: 10.1016/j.seppur.2006.01.01
  34. Ye, H.P., Chen, F.Z., Sheng, Y.Q., Sheng, Y.G., Fu, J.M. (2006). Adsorption of phosphate from aqueous solution onto modified palygorskites. Separation and Purification Technology, 50(3), 283–290. DOI: 10.1016/j.seppur.2005.12.004
  35. Hamdi, N., Srasra, E. (2012). Removal of phosphate ions from aqueous solution using Tunisian clays minerals and synthetic zeolite. Journal of Environmental Sciences, 24(4), 617–623. DOI: 10.1016/S1001-0742(11)60791-2
  36. Yu, S.H., Feng, X.Y., Fan, M.Y., Zhang, Y.Z., Wang, Y. (2024). Efficient removal of phosphorus and nitrogen from aquatic environment using sepiolite-MgO nanocomposites: preparation, characterization, removal performance, and mechanism. Environmental Science and Pollution Research, 31(11), 17481–17493. DOI: 10.1007/s11356-024-32346-6
  37. Zhang, C., Ding, S., Xu, D., Tang, Y., Wong, M.H. (2014). Bioavailability assessment of phosphorus and metals in soils and sediments: a review of diffusive gradients in thin films (DGT). Environmental Monitoring and Assessment, 186(11), 7367–7378. DOI: 10.1007/s10661-014-3933-0
  38. Zhu, Q., Ji, J., Tang, X., Wang, C., Sun, H. (2023). Bioavailability Assessment of Heavy Metals and Organic Pollutants in Water and Soil Using DGT: A Review. Applied Sciences (Switzerland), 13(17) DOI: 10.3390/app13179760
  39. [39] Wu, Z., Wang, S., Zhang, L., Jiao, L. (2016). DGT induced fluxes in sediments model for the simulation of phosphorus process and the assessment of phosphorus release risk. Environmental Science and Pollution Research, 23(14), 14608–14620. DOI: 10.1007/s11356-016-6651-z

Last update:

No citation recorded.

Last update:

No citation recorded.