skip to main content

Investigation on the Hydrothermal Condition in Synthesis of Active Matrix from Metakaolin: Physicochemical Properties and Intrinsic Cracking Activities

1Department of Chemical Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia

2Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia

3Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung, Bandung 40132, Indonesia

Received: 11 Jul 2024; Revised: 24 Aug 2024; Accepted: 24 Aug 2024; Available online: 8 Sep 2024; Published: 30 Oct 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The current trends in research and development of FCC catalyst is focused on the formulation of active matrices that serve as pre-crackers, with the objective of reducing the diffusional resistance of the longer chain hydrocarbon molecule in the feed. In this study, an aluminosilicate active matrix was synthesised from metakaolin using hydrothermal method. The experimental variables that were varied were hydrothermal temperature, in the range of 80 to 110 °C, and hydrothermal time, in the range of 12 to 72 hours, to investigate the best conditions for synthesising the active matrix. Subsequently, the active matrix was subjected to a series of analyses, including X-ray fluorescence, X-ray diffraction, N2 physisorption, NH3-temperature programmed desorption, Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetry, with the objective of determining its composition, crystal characteristics, surface characteristics, acidity, functional groups, material structure, and thermal characteristics. Additionally, the active matrix was tested for its intrinsic cracking activity using the micro activity test (MAT). The results indicate that the best temperature for hydrothermal synthesis of the active matrix is 80 °C. The active matrix synthesised with a heating time of 24 hours demonstrated the highest light cycle oil yield, reaching 38.9 wt%. Meanwhile, the active matrix synthesised at 48 hours exhibited the most favourable characteristics, with a specific surface area of 144.23 m2/g and a pore volume of 0.9933 cm3/g, as well as the highest cracking conversion of 70.0 wt%. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Active Matrix; Fluid Catalytic Cracking; Hydrothermal; Metakaolin; Vacuum Gas Oil
Funding: RU3P-2024 LPIT-ITB under contract LPIT1.PN-6-38-2024; P2MI-Faculty of Industrial Technology-ITB under contract PPMI-1-61-2024

Article Metrics:

  1. Holechek, J.L., Geli, H.M.E., Sawalhah, M.N., Valdez, R. (2022). A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?, Sustainability (Switzerland), 14(8), 1–22. DOI: 10.3390/su14084792
  2. MEMR (2023). Handbook of Energy & Economic Statistics of Indonesia. Jakarta: Ministry of Energy and Mineral Resources
  3. Khande, A.R., Dasila, P.K., Majumder, S., Maity, P., Thota, C. (2021). Recent Developments in FCC Process and Catalysts. In: Pant, K.K., Gupta, S.K., Ahmad, E. (eds) Catalysis for Clean Energy and Environmental Sustainability: Petrochemicals and Refining Processes - Volume 2. Cham: Springer International Publishing, pp. 65–108. DOI: 10.1007/978-3-030-65021-6_3
  4. Ross, J.R.H. (2019). Chapter 10 - Catalysis in the Production of Energy Carriers From Oil. In: Ross, J.R.H. (ed) Contemporary Catalysis. Amsterdam: Elsevier, pp. 233–249. DOI: https://doi.org/10.1016/B978-0-444-63474-0.00010-2
  5. Sadeghbeigi, R. (2020). Chapter 5 - FCC catalysts. In: Fluid Catalytic Cracking Handbook (Fourth Edition), Fourth Edi. Butterworth-Heinemann, pp. 83–110. DOI: https://doi.org/10.1016/B978-0-12-812663-9.00005-9
  6. Vogt, E.T.C., Whiting, G.T., Dutta Chowdhury, A., Weckhuysen, B.M. (2015). Chapter Two - Zeolites and Zeotypes for Oil and Gas Conversion. In: Jentoft, F.C. (ed). Academic Press, pp. 143–314.DOI: https://doi.org/10.1016/bs.acat.2015.10.001
  7. Scherzer, J. (1993). Chapter 5 Correlation Between Catalyst Formulation and Catalytic Properties. In: Magee, J.S., Mitchell, M.M. (eds) Fluid Catalytic Cracking: Science and Technology. Elsevier, pp. 145–182.DOI: https://doi.org/10.1016/S0167-2991(08)63828-8
  8. Feng, R., Qiao, K., Wang, Y., Yan, Z. (2013). Perspective on FCC catalyst in China. Applied Petrochemical Research, 3(3–4), 63–70. DOI: 10.1007/s13203-013-0030-1
  9. Lloyd, L. (2011). Catalytic Cracking Catalysts. In: Handbook of Industrial Catalysts. Boston, MA: Springer US, pp. 169–210.DOI: 10.1007/978-0-387-49962-8_5
  10. Gunawan, M.L., Rasrendra, C.B., Widikrama, C.L., Kurniawan, R.G., Nisa, L.M., Hudaya, F.Y.P., Makertihartha, I.G.B.N., Subagjo (2024). Investigation of the Effect of Silica and Phosphorus Content on the Performance of Active Matrix as Component of Cracking Catalyst. Journal of Engineering and Technological Sciences, 56(2), 205–218. DOI: 10.5614/j.eng.technol.sci.2024.56.2.3
  11. Chen, S., Li, T., Cao, G., Guan, M. (2004). Amorphous silica-alumina, a carrier combination and a hydrocracking catalyst containing the same, and processes for the preparation thereof, US Patent 6723297 B2
  12. Locus, R., Verboekend, D., d’Halluin, M., Dusselier, M., Liao, Y., Nuttens, N., Jaumann, T., Oswald, S., Mafra, L., Giebeler, L., Sels, B. (2018). Synthetic and Catalytic Potential of Amorphous Mesoporous Aluminosilicates Prepared by Postsynthetic Aluminations of Silica in Aqueous Media. ChemCatChem, 10(6), 1385–1397. DOI: 10.1002/cctc.201701660
  13. Qoniah, I., Prasetyoko, D., Bahruji, H., Triwahyono, S., Jalil, A.A., Suprapto, Hartati, Purbaningtias, T.E. (2015). Direct synthesis of mesoporous aluminosilicates from Indonesian kaolin clay without calcination. Applied Clay Science, 118, 290–294. DOI: 10.1016/j.clay.2015.10.007
  14. Twaiq, F.A., Mohamed, A.R., Bhatia, S. (2003). Liquid hydrocarbon fuels from palm oil by catalytic cracking over aluminosilicate mesoporous catalysts with various Si/Al ratios. Microporous and Mesoporous Materials, 64(1), 95–107. DOI: 10.1016/j.micromeso.2003.06.001
  15. Xie, M., Li, Y., Etim, U.J., Lou, H., Xing, W., Wu, P., Liu, X., Bai, P., Yan, Z. (2019). Enhanced Catalytic Performance of the FCC Catalyst with an Alumina Matrix Modified by the Zeolite Y Structure-Directing Agent. Industrial & Engineering Chemistry Research, 58(14), 5455–5463. DOI: 10.1021/acs.iecr.8b04890
  16. Souza, E.C. de, Pereira, M.M., Lam, Y.L., Morgado, E., Chinelatto, L.S. (2021). Aluminum phosphate as active matrix of fluid catalytic cracking catalysts: Y zeolite stabilization. Applied Catalysis A: General, 619(March), 118156. DOI: 10.1016/j.apcata.2021.118156
  17. Hosseinpour, N., Mortazavi, Y., Bazyari, A., Khodadadi, A.A. (2009). Synergetic effects of Y-zeolite and amorphous silica-alumina as main FCC catalyst components on triisopropylbenzene cracking and coke formation. Fuel Processing Technology, 90(2), 171–179. DOI: 10.1016/j.fuproc.2008.08.013
  18. Puspitasari, E. (2022). Development of Silica-Alumina Active Matrix with Addition of Phosphorus Compounds and Polyethylene Glycol (PEG) as Components of the Cracking Catalyst. Master Thesis, Bandung Institute of Technology
  19. Sotomayor, F., Quantatec, A.P., Sotomayor, F.J., Cychosz, K.A., Thommes, M. (2018). Characterization of Micro/Mesoporous Materials by Physisorption: Concepts and Case Studies. Acc. Mater. Surf. Res., 3(2), 34–50
  20. Leofanti, G., Padovan, M., Tozzola, G., Venturelli, B. (1998). Surface area and pore texture of catalysts. Catalysis Today, 41(1), 207–219. DOI: 10.1016/S0920-5861(98)00050-9
  21. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. DOI: 10.1515/pac-2014-1117
  22. Cychosz, K.A., Thommes, M. (2018). Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials. Engineering, 4(4), 559–566. DOI: 10.1016/j.eng.2018.06.001
  23. Vogt, E.T.C., Weckhuysen, B.M. (2015). Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chemical Society Reviews, 44(20), 7342–7370. DOI: 10.1039/c5cs00376h
  24. Asghari, A., Khorrami, M.K., Kazemi, S.H. (2019). Hierarchical H-ZSM5 zeolites based on natural kaolinite as a high-performance catalyst for methanol to aromatic hydrocarbons conversion. Scientific Reports, 9(1), 1–9. DOI: 10.1038/s41598-019-54089-y
  25. Jentoft, F.C. (2013). Solid Acids and Bases. In: Comprehensive Inorganic Chemistry II. Elsevier, pp. 205–230. DOI: 10.1016/B978-0-08-097774-4.00720-8
  26. Elimbi, A., Tchakoute, H.K., Njopwouo, D. (2011). Effects of calcination temperature of kaolinite clays on the properties of geopolymer cements. Construction and Building Materials, 25(6), 2805–2812. DOI: 10.1016/j.conbuildmat.2010.12.055
  27. Soleimani, M., Bassi, A., Margaritis, A. (2007). Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnology Advances, 25(6), 570–596. DOI: 10.1016/j.biotechadv.2007.07.003
  28. Finocchiaro, C., Barone, G., Mazzoleni, P., Leonelli, C., Gharzouni, A., Rossignol, S. (2020). FT-IR study of early stages of alkali activated materials based on pyroclastic deposits (Mt. Etna, Sicily, Italy) using two different alkaline solutions. Construction and Building Materials, 262, 120095. DOI: 10.1016/j.conbuildmat.2020.120095
  29. Rees, C.A., Provis, J.L., Lukey, G.C., van Deventer, J.S.J. (2007). In Situ ATR-FTIR Study of the Early Stages of Fly Ash Geopolymer Gel Formation. Langmuir, 23(17), 9076–9082. DOI: 10.1021/la701185g
  30. Kubatová, D., Rybová, A., Zezulová, A., Švec, J. (2018). Thermal behaviour of inorganic aluminosilicate polymer based on cement kiln dust. IOP Conference Series: Materials Science and Engineering, 379(1) DOI: 10.1088/1757-899X/379/1/012008
  31. Chimupala, Y., Junploy, P., Hardcastle, T., Westwood, A., Scott, A., Johnson, B., Brydson, R. (2016). Universal synthesis method for mixed phase TiO2(B)/anatase TiO2 thin films on substrates via a modified low pressure chemical vapour deposition (LPCVD) route. Journal of Materials Chemistry A, 4(15), 5685–5699. DOI: 10.1039/c6ta01383j
  32. Rickard, W.D.A., Riessen, A. van, Walls, P. (2010). Thermal Character of Geopolymers Synthesized from Class F Fly Ash Containing High Concentrations of Iron and α‐Quartz. International Journal of Applied Ceramic Technology, 7(1), 81–88. DOI: 10.1111/j.1744-7402.2008.02328.x
  33. Vágvölgyi, V., Palmer, S.J., Kristóf, J., Frost, R.L., Horváth, E. (2008). Mechanism for hydrotalcite decomposition: A controlled rate thermal analysis study. Journal of Colloid and Interface Science, 318(2), 302–308. DOI: 10.1016/j.jcis.2007.10.033
  34. Faqir, N.M., Shawabkeh, R., Al-Harthi, M., Wahhab, H.A. (2019). Fabrication of Geopolymers from Untreated Kaolin Clay for Construction Purposes. Geotechnical and Geological Engineering, 37(1), 129–137. DOI: 10.1007/s10706-018-0597-5
  35. Zhang, Y.J., Wang, Y.C., Xu, D.L., Li, S. (2010). Mechanical performance and hydration mechanism of geopolymer composite reinforced by resin. Materials Science and Engineering: A, 527(24–25), 6574–6580. DOI: 10.1016/j.msea.2010.06.069
  36. van der Bij, H.E., Weckhuysen, B.M. (2015). Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis. Chem. Soc. Rev., 44(20), 7406–7428. DOI: 10.1039/C5CS00109A
  37. Abreu, J.S., Costa, L.M., Ferreira, L.D.L., de Oliveira, R.K.F.G., de Souza, T. da C.C., Nunes, E.H.M., Houmard, M. (2023). Hydrothermal treatment as a tool to tailor the mesoporous structure of sol-gel silica. Journal of Non-Crystalline Solids, 610(January), 122323. DOI: 10.1016/j.jnoncrysol.2023.122323
  38. Kanezashi, M., Hataoka, N., Ikram, R., Nagasawa, H., Tsuru, T. (2021). Hydrothermal stability of fluorine-induced microporous silica membranes: Effect of steam treatment conditions. AIChE Journal, 67(9), 1–11. DOI: 10.1002/aic.17292
  39. Fernandes, F.R.D., Pinto, F.G.H.S., Lima, E.L.F., Souza, L.D., Caldeira, V.P.S., Santos, A.G.D. (2018). Influence of synthesis parameters in obtaining KIT-6 mesoporous material. Applied Sciences (Switzerland), 8(5), 725. DOI: 10.3390/app8050725
  40. Khatrin, I., Kusuma, R.H., Kadja, G.T.M., Krisnandi, Y.K. (2023). Significance of ZSM-5 hierarchical structure on catalytic cracking: Intra- vs inter-crystalline mesoporosity. Inorganic Chemistry Communications, 149(October 2022), 110447. DOI: 10.1016/j.inoche.2023.110447
  41. Williams, B.A., Babitz, S.M., Miller, J.T., Snurr, R.Q., Kung, H.H. (1999). The roles of acid strength and pore diffusion in the enhanced cracking activity of steamed Y zeolites. Applied Catalysis A: General, 177(2), 161–175. DOI: https://doi.org/10.1016/S0926-860X(98)00264-6
  42. Corma, A., Corresa, E., Mathieu, Y., Sauvanaud, L., Al-Bogami, S., Al-Ghrami, M.S., Bourane, A. (2017). Crude oil to chemicals: light olefins from crude oil. Catalysis Science & Technology, 7(1), 12–46. DOI: 10.1039/C6CY01886F
  43. Kadja, G.T.M., Azhari, N.J., Apriadi, F., Novita, T.H., Safira, I.R., Rasrendra, C.B. (2023). Low-temperature synthesis of three-pore system hierarchical ZSM-5 zeolite for converting palm oil to high octane green gasoline. Microporous and Mesoporous Materials, 360, 112731. DOI: 10.1016/j.micromeso.2023.112731
  44. Takahashi, R., Sato, S., Sodesawa, T., Goto, T., Matsutani, K., Mikami, N. (2007). Bending strength of silica gel with bimodal pores. II. Effect of variations in morphology and porosity. Materials Research Bulletin, 42(3), 523–531. DOI: 10.1016/j.materresbull.2006.06.015
  45. Hezel, R., Ziegler, R. (1993). Correlation Between Catalyst Formulation and Catalytic Properties. Solar Energy, 76(December 1992), 260–264
  46. Ishihara, A., Wakamatsu, T., Nasu, H., Hashimoto, T. (2014). Preparation of amorphous silica-alumina using polyethylene glycol and its role for matrix in catalytic cracking of n-dodecane. Applied Catalysis A: General, 478, 58–65. DOI: 10.1016/j.apcata.2014.03.016
  47. Kadja, G.T.M., Ilmi, M.M., Azhari, N.J., Khalil, M., Fajar, A.T.N., Subagjo, Makertihartha, I.G.B.N., Gunawan, M.L., Rasrendra, C.B., Wenten, I.G. (2022). Recent advances on the nanoporous catalysts for the generation of renewable fuels. Journal of Materials Research and Technology, 17, 3277–3336. DOI: 10.1016/j.jmrt.2022.02.033
  48. Makertihartha, I.G.B.N., Kadja, G.T.M., Gunawan, M.L., Mukti, R.R., Subagjo (2020). Exceptional aromatic distribution in the conversion of palm-oil to biohydrocarbon using zeolite-based catalyst. Journal of Engineering and Technological Sciences, 52(4), 584–597. DOI: 10.5614/j.eng.technol.sci.2020.52.4.9

Last update:

No citation recorded.

Last update:

No citation recorded.