skip to main content

Removal of Tetracycline Using Tungsten Disulfide/Graphene Oxide as Photocatalyst: Effect of Light Irradiation and Kinetic Studies

1School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000, Kuala Pilah, Negeri Sembilan, Malaysia

2Advanced Materials for Environmental Remediation (AMER), Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000, Kuala Pilah, Negeri Sembilan, Malaysia

3Electrochemical Material and Sensor (EMaS) Research Group, Universiti Teknologi MARA, Shah Alam, 40450 Selangor, Malaysia

Received: 25 Aug 2024; Revised: 10 Oct 2024; Accepted: 11 Oct 2024; Available online: 16 Oct 2024; Published: 30 Oct 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Once widely utilised in both human and veterinary medicine, tetracycline antibiotics are now recognised as major environmental pollutants with detrimental effects on the environment and human health. Concerns regarding allergic responses, gastrointestinal problems, and diseases resistant to antibiotics are raised by their persistence in soil, groundwater, and surface water. The production of a tungsten disulfide-graphene oxide nanocomposite for tetracycline degradation under varied light sources is presented in this work. The successful incorporation of tungsten disulfide on graphene oxide structures was confirmed by characterization using Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) and X-ray Diffraction (XRD). This revealed characteristic peaks for hydroxyl (3328 cm–1), carbonyl (1732 cm–1), alkene (1583 cm–1), and ether (1044 cm–1) bonds, as well as sulphur bonding (500 to 739 cm–1). With a d-spacing of 2.24 nm, the tungsten disulphide-graphene oxide nanocomposite had a strong peak at 2θ = 15.5˚corresponds to the (002) plane, as shown by X-ray diffraction. A distinctive GO peak was found at 2θ = 10.1˚, which corresponds to the plane (002). With light emitting diodes (95.67%), fluorescent lights (81.28%), and ultraviolet-visible light (88.09%), the nanocomposite in a photoreactor showed excellent photocatalytic efficiency. The better performance of the tungsten disulfide-graphene oxide nanocomposite under varying illumination circumstances, as determined by the Langmuir-Hinshelwood (LH) model, presents a viable and sustainable option for tetracycline degradation in water purification. This technique tackles a long-term strategy for tetracycline photocatalytic degradation in water purification under different illumination scenarios. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Tungsten Disulfide; Graphene Oxide; Nanocomposites; Photocatalyst; Tetracycline.
Funding: Ministry of Higher Education Malaysia under contract FRGS/1/2022/STG05/UITM/02/12

Article Metrics:

  1. Khetan, S.K., Collins, T.J. (2007). Human Pharmaceuticals in the Aquatic Environment: A Challenge to Green Chemistry. Chemical Reviews, 107(6), 2319–2364. DOI: 10.1021/cr020441w
  2. Sawant, S.A., Riyaz Patankar, U., Kasale, A.S., Tawade, S.S. (2015). Pharmaceutical Pollution: Impact On Environmental Sustainability and Management. World Journal of Pharmaceutical Research, 10. DOI: 10.20959/wjpr202111-21436
  3. Dhawande, A., Moon, S., Kale, V., Pethe, A.M., & Raut, N.A. (2023). Pharmaceutical Waste: An Emerging Threat to The Ecosystem. In 360-Degree Waste Management, 2, 3–37. DOI: 10.1016/B978-0-323-90909-9.00008-3
  4. Daghrir, R., Drogui, P. (2013). Tetracycline Antibiotics in The Environment: A Review. Environmental Chemistry Letters, 11(3), 209–227. DOI: https://doi.org/10.1007/s10311-013-0404-8
  5. Adya, K.A., Inamadar, A.C. (2015). Comprehensive Approach to Infections in Dermatology (Archana Singal & Chander Grover, Eds.; Illustrated). JP Medical Ltd, 2016
  6. Goodman C.C., Peterson, C., Komp, M. (2011). Pathology for the Physical Therapist Assistant (Catherine Cavallaro Kellogg & Kenda S. Fuller, Eds.; Revised, p. 128). Elsevier Health Sciences, 2011
  7. Chopra, I., Roberts, M. (2001). Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiology and Molecular Biology Reviews, 65(2), 232–260. DOI: 10.1128/MMBR.65.2.232-260.2001
  8. Mora-Gamboa, M.P.C., Rincón-Gamboa, S.M., Ardila-Leal, L.D., Poutou-Piñales, R.A., Pedroza-Rodríguez, A.M., Quevedo-Hidalgo, B.E. (2022). Impact of Antibiotics as Waste, Physical, Chemical, and Enzymatical Degradation: Use of Laccases. Molecules, 27(14), 4436. DOI: 10.3390/molecules27144436
  9. Bhattacharyya, P., Basak, S., Chakrabarti, S. (2021). Advancement Towards Antibiotic Remediation: Heterostructure and Composite Materials. ChemistrySelect, 6(29), 7323-7345. DOI: 10.1002/slct.202100436
  10. Gopal, G., Alex, S.A., Chandrasekaran, N., Mukherjee, A. (2020). A Review On Tetracycline Removal From Aqueous Systems By Advanced Treatment Techniques. RSC Advances, 10(45), 27081–27095. DOI: 10.1039/D0RA04264A
  11. Ahmad, F., Zhu, D., Sun, J. (2021). Environmental Fate of Tetracycline Antibiotics: Degradation Pathway Mechanisms, Challenges, and Perspectives. Environmental Sciences Europe, 33(1), 64. DOI: 10.1186/s12302-021-00505-y
  12. Hassani, A., Krishnan, S., Scaria, J., Eghbali, P., Nidheesh, P.V. (2021). Z-Scheme Photocatalysts for Visible-Light-Driven Pollutants Degradation: A Review on Recent Advancements. Current Opinion in Solid State and Materials Science, 25(5), 100941. DOI: 10.1016/j.cossms.2021.100941
  13. Zhang, W., Lv, T., Deng, C., Gao, H., Hu, S., Chen, F., ... Xiong, W. (2022). Rapid Solid-Phase Sulfurization Growth and Nonlinear Optical Characterization of Transfer-Free Tis3 Nanoribbons. Chemistry of Materials, 34(6), 2790-2797. DOI: 10.1021/acs.chemmater.2c00068
  14. Fiaz, M., Sohail, M., Nafady, A., Will, G., Wahab, M.A. (2023). A Facile Two-Step Hydrothermal Preparation of 2D/2D Heterostructure of Bi2WO6/WS2 For the Efficient Photodegradation of Methylene Blue Under Sunlight. Environmental Research, 234, 116550. DOI: 10.1016/j.envres.2023.116550
  15. Lei, T., Chen, W., Huang, J., Yan, C., Sun, H., Wang, C., Xiong, J. (2017). Multi‐Functional Layered WS2 Nanosheets for Enhancing The Performance of Lithium–sulfur Batteries. Advanced Energy Materials, 7(4), 1601843. DOI: 10.1002/aenm.201601843
  16. Amangelsin, Y., Semenova, Y., Dadar, M., Aljofan, M., Bjørklund, G. (2023). The Impact of Tetracycline Pollution on The Aquatic Environment and Removal Strategies. Antibiotics, 12(3), 440. DOI: 10.3390/antibiotics12030440
  17. Navalon, S., Dhakshinamoorthy, A., Alvaro, M., Garcia, H. (2016). Metal Nanoparticles Supported on Two-Dimensional Graphenes as Heterogeneous Catalysts. Coordination Chemistry Reviews, 312, 99–148. DOI: 10.1016/j.ccr.2015.12.005
  18. Muniz, F.T.L., Miranda, M.A.R., Morilla dos Santos, C., Sasaki, J.M. (2016). The Scherrer Equation and The Dynamical Theory of X-Ray Diffraction. Acta Crystallographica Section A Foundations and Advances, 72(3), 385–390. DOI: 10.1107/S205327331600365X
  19. Das, R., Laha, J., Hazarika, I., Thakuria, B.R., Baruah, A., Gogoi, B. (2024). Tungsten Disulfide and Reduced Graphene Oxide Composite as Efficient Catalyst for The Reduction of Picric Acid in Aqueous Media. Journal of Materials Science, 59(9), 3839–3857. DOI: 10.1007/s10853-024-09465-z
  20. Monshi, A., Foroughi, M.R., Monshi, M.R. (2012). Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World Journal of Nano Science and Engineering, 02(03), 154–160. DOI: 10.4236/wjnse.2012.23020
  21. Yang, Z., Ren, X., Ding, S., Chen, R., & Tian, M. (2023). Preparation of 1 T-WS2 Under Different Conditions and Its Enhancement of Fe(III)/Fe (II) Cycle, Synergistic Catalysis of PMS Activation and Degradation of Organic Pollutants. Journal of Environmental Chemical Engineering, 11(6), 111444. DOI: 10.1016/j.jece.2023.111444
  22. Norsham, I.N.M., Sambasevam, K.P., Shahabuddin, S., Jawad, A.H., Baharin, S.N.A. (2022). Photocatalytic Degradation of Perfluorooctanoic Acid (PFOA) Via Mos2/Rgo For Water Purification Using Indoor Fluorescent Irradiation. Journal of Environmental Chemical Engineering, 10(5), 108466. DOI: 10.1016/j.jece.2022.108466
  23. Zhou, L., Yan, S., Lin, Z., Shi, Y. (2016). In Situ Reduction of WS2 Nanosheets for WS2/Reduced Graphene Oxide Composite With Superior Li-Ion Storage. Materials Chemistry and Physics, 171, 16–21. DOI: 10.1016/j.matchemphys.2015.12.061
  24. Singh, O., Singh, M.P., Kohli, N., Singh, R.C. (2012). Effect of pH on The Morphology and Gas Sensing Properties of Zno Nanostructures. Sensors and Actuators B: Chemical, 166–167, 438–443. DOI: 10.1016/j.snb.2012.02.085
  25. Ambroz, F., Macdonald, T.J., Martis, V., Parkin, I. P. (2018). Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs. Small Methods, 2(11). DOI: 10.1002/smtd.201800173
  26. Nugraha, R.E., Fauziyah, N.A., Wira, G.R. (2022). Templated Growth Formation Of Mesoporous Silica Materials: A Soft-Hard Template Approach. Nusantara Science and Technology Proceedings. DOI: 10.11594/nstp.2022.2747
  27. Peng, K., Wang, H., Li, X., Wang, J., Cai, Z., Su, L., Fan, X. (2019). Emerging WS2/Montmorillonite Composite Nanosheets As An Efficient Hydrophilic Photocatalyst For Aqueous Phase Reactions. Scientific Reports, 9(1), 16325. DOI: 10.1038/s41598-019-52191-9
  28. Wang, H., Yao, H., Pei, J., Liu, F., & Li, D. (2016). Photodegradation of Tetracycline Antibiotics in Aqueous Solution by UV/Zno. Desalination and Water Treatment, 57(42), 19981–19987. DOI: 10.1080/19443994.2015.1103309
  29. Safari, G.H., Hoseini, M., Seyedsalehi, M., Kamani, H., Jaafari, J., Mahvi, A.H. (2015). Photocatalytic Degradation of Tetracycline Using Nanosized Titanium Dioxide In Aqueous Solution. International Journal of Environmental Science and Technology, 12(2), 603–616. DOI: 10.1007/s13762-014-0706-9
  30. Wu, S., Li, X., Tian, Y., Lin, Y., Hu, Y.H. (2021). Excellent Photocatalytic Degradation of Tetracycline over Black Anatase-TiO2 under Visible Light. Chemical Engineering Journal, 406, 126747. DOI: 10.1016/j.cej.2020.126747
  31. Ahmadi, M., Ramezani Motlagh, H., Jaafarzadeh, N., Mostoufi, A., Saeedi, R., Barzegar, G., Jorfi, S. (2017). Enhanced Photocatalytic Degradation of Tetracycline and Real Pharmaceutical Wastewater using MWCNT/TiO2 Nano-Composite. Journal of Environmental Management, 186, 55–63. DOI: 10.1016/j.jenvman.2016.09.088
  32. Khataee, A., Eghbali, P., Irani-Nezhad, M.H., Hassani, A. (2018). Sonochemical Synthesis Of WS2 Nanosheets and Its Application in Sonocatalytic Removal of Organic Dyes from Water Solution. Ultrasonics Sonochemistry, 48, 329–339. DOI: 10.1016/j.ultsonch.2018.06.003

Last update:

No citation recorded.

Last update:

No citation recorded.