skip to main content

Treatment of Methylene Blue Using Ni-Al/Magnetite Biochar Layered Double Hydroxides Composite by Adsorption

1Magister Programme in Environment Management, Sriwijaya University, Jl. Padang Selasa No. 524 Ilir Barat 1, Palembang, South Sumatra, Indonesia

2Graduate School, Faculty of Mathematics and Natural Science, Sriwijaya University, Jl. Palembang-Prabumulih, Km.90-32, Ogan Ilir, South Sumatera, Indonesia

3Research Center of Inorganic Materials and Complexes, Universitas Sriwijaya, Palembang, 30139, Indonesia

4 Master Program of Material Science, Graduate School Universitas Sriwijaya, Palembang, 30139, Indonesia

View all affiliations
Received: 1 Oct 2023; Revised: 15 Nov 2023; Accepted: 16 Nov 2023; Available online: 17 Nov 2023; Published: 11 Dec 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Methylene blue dye is hard to degrade and requires treatment using Ni-Al Layered double hydroxides (LDHs) modified with magnetite biochar (MBC) to form Ni-Al/magnetite biochar composite in overcoming environmental pollution. Material attainment was identified by characterization using X-Ray Diffraction (XRD), Fourier Transform – Infra Red (FT-IR), Branuer Emmet Teller (BET), Scanning Electron Microscopy – Energy Dispersive X-Ray (SEM-EDX) and Vibration Sample Magnetometer (VSM). XRD characterization displays angle 2θ at 11°, 60° is a typical angle of LDH, and angles 22° and 35° of magnetite biochar. FT-IR characterization analysis at wavelength 1381 cm-1 for NO3- group and M-O group at wave number 700 cm-1. C-H group on biochar at 1404 cm-1 and wave number 586 cm-1 for Fe-O group. BET characterization analysis of Ni-Al/MBC has a large surface area and pore volume of 127.310 m²/g and 0.1950 cm³/g. SEM characterization analysis of Ni-Al/MBC has large, coarse pores and non-uniform shape, EDX data shows that there are forming elements such as Ni, Al from LDH and, Fe, C elements from magnetite biochar. pH, kinetics, isotherms, and thermodynamics become influential in adsorption processes. The adsorption capacity of the composite reaches 68.493 mg/g by following the Langmuir equation and adsorption kinetics refers to the Pseudo Second Order (PSO) equation. Adsorption continuity is spontaneous and endothermic. Ni-Al/MBC has stability in the process of adsorbent regeneration up to five adsorption cycles and, therefore can be used as a potential adsorbent in the treatment of methylene blue dye in aqueous environmental pollution. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Ni-Al LDHs; Magnetite Biochar; Composite; Methylene Blue; Regeneration
Funding: Sriwijaya University

Article Metrics:

  1. Adjid, G.A.F., Kurniawan, A., Nazriati (2022). Textile Industry Waste Pollution in The Konto River. J .Exp. Life Sci., 12 (3), 2022. DOI: 10.21776/ub.jels.2022.012.03.05
  2. Lellis, B., Fávaro-Polonio, C.Z., Pamphile, J.A., Polonio, J.C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2), 275–290. DOI: 10.1016/j.biori.2019.09.001
  3. Kuang, Y., Zhang, X., Zhou, S. (2020). Adsorption of methylene blue in water onto activated carbon by surfactant modification. Water (Switzerland), 12(2), 1–19. DOI: 10.3390/w12020587
  4. Yang, C., Dong, W., Cui, G., Zhao, Y., Shi, X., Xia, X., Tang, B., Wang, W. (2017). Highly efficient photocatalytic degradation of methylene blue by P2ABSA-modified TiO2 nanocomposite due to the photosensitization synergetic effect of TiO2 and P2ABSA. RSC Advances, 7 (38), 23699–23708. DOI: 10.1039/c7ra02423a
  5. Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A.H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., Shah, L.A., Shah, T., Khan, I. (2022). Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water (Switzerland), 14 (2) DOI: 10.3390/w14020242
  6. Radoor, S., Karayil, J., Jayakumar, A., Parameswaranpillai, J., Siengchin, S. (2021). Release of toxic methylene blue from water by mesoporous silicalite-1: characterization, kinetics and isotherm studies. Applied Water Science, 11 (7), 1–12. DOI: 10.1007/s13201-021-01435-z
  7. Oladoye, P.O., Ajiboye, T.O., Omotola, E.O., Oyewola, O.J. (2022). Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results in Engineering, 16(September), 100678. DOI: 10.1016/j.rineng.2022.100678
  8. Huang, R., Zhang, Q., Yao, H., Lu, X., Zhou, Q., Yan, D. (2021). Ion-exchange resins for efficient removal of colorants in bis(hydroxyethyl) terephthalate. ACS Omega, 6 (18), 12351–12360. DOI: 10.1021/acsomega.1c01477
  9. Abid, M.F., Zablouk, M.A., Abid-Alameer, A.M. (2012). Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration. Journal of Environmental Health Science and Engineering, 9(1), 1–9. DOI: 10.1186/1735-2746-9-17
  10. Visa, M. (2016). Synthesis and characterization of new zeolite materials obtained from fly ash for heavy metals removal in advanced wastewater treatment. Powder Technology, 294 (1), 338-347. DOI: 10.1016/j.powtec.2016.02.019
  11. Lou, T., Cui, G., Xun, J., Wang, X., Feng, N., Zhang, J. (2018). Synthesis of a terpolymer based on chitosan and lignin as an effective flocculant for dye removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 537 (October 2017), 149–154. DOI: 10.1016/j.colsurfa.2017.10.012
  12. Javeed Ganaie, R., Rafiq, S., Sharma, A. (2023). Recent Advances in Physico-chemical Methods for Removal of Dye from Wastewater. IOP Conference Series: Earth and Environmental Science, 1110 (1) DOI: 10.1088/1755-1315/1110/1/012040
  13. C, L., G, A.G.R. (2019). A review on photodegradation of various dyes using photocatalysts. International Journal of Advanced Scientific Research and Management, 4 (7) DOI: 10.36282/ijasrm/4.7.2019.1584
  14. Shabir, M., Yasin, M., Hussain, M., Shafiq, I., Akhter, P., Nizami, A.S., Jeon, B.H., Park, Y.K. (2022). A review on recent advances in the treatment of dye-polluted wastewater. Journal of Industrial and Engineering Chemistry, 112, 1–19. DOI: 10.1016/j.jiec.2022.05.013
  15. Ullah, A., Zahoor, M., Din, W.U., Muhammad, M., Khan, F.A., Sohail, A., Ullah, R., Ali, E.A., Murthy, H.C.A. (2022). Removal of Methylene Blue from Aqueous Solution Using Black Tea Wastes: Used as Efficient Adsorbent. Adsorption Science and Technology, 2022. DOI: 10.1155/2022/5713077
  16. Benjelloun, M., Miyah, Y., Akdemir Evrendilek, G., Zerrouq, F., Lairini, S. (2021). Recent Advances in Adsorption Kinetic Models: Their Application to Dye Types. Arabian Journal of Chemistry, 14 (4), 103031. DOI: 10.1016/j.arabjc.2021.103031
  17. Jinisha, R., Gandhimathi, R., Ramesh, S.T., Nidheesh, P. V., Velmathi, S. (2018). Removal of rhodamine B dye from aqueous solution by electro-Fenton process using iron-doped mesoporous silica as a heterogeneous catalyst. Chemosphere, 200, 446–454. DOI: 10.1016/j.chemosphere.2018.02.117
  18. Saigl, Z.M. (2021). Various adsorbents for removal of rhodamine b dye: A review. Indonesian Journal of Chemistry, 21(4), 1039–1056. DOI: 10.22146/ijc.62863
  19. Boulahbal, M., Malouki, M.A., Canle, M., Redouane-Salah, Z., Devanesan, S., AlSalhi, M.S., Berkani, M. (2022). Removal of the industrial azo dye crystal violet using a natural clay: Characterization, kinetic modeling, and RSM optimization. Chemosphere, 306 (July), 135516. DOI: 10.1016/j.chemosphere.2022.135516
  20. Bharath Balji, G., Surya, A., Govindaraj, P., Monisha Ponsakthi, G. (2022). Utilization of fly ash for the effective removal of hazardous dyes from textile effluent. Inorganic Chemistry Communications, 143 (June), 109708. DOI: 10.1016/j.inoche.2022.109708
  21. Ngulube, T., Gumbo, J.R., Masindi, V., Maity, A. (2017). An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review. Journal of Environmental Management, 191, 35–57. DOI: 10.1016/j.jenvman.2016.12.031
  22. Tatarchuk, T., Soltys, L., Macyk, W. (2023). Magnetic adsorbents for removal of pharmaceuticals: A review of adsorption properties. Journal of Molecular Liquids, 384 (May), 122174. DOI: 10.1016/j.molliq.2023.122174
  23. Palapa, N.R., Taher, T., Mohadi, R., Rachmat, A., Mardiyanto, M., Miksusanti, M., Lesbani, A. (2021). NiAl-layered double hydroxide intercalated with Keggin polyoxometalate as adsorbent of malachite green : kinetic and equilibrium studies. Chemical Engineering Communications, 0(0), 1–12. DOI: 10.1080/00986445.2021.1895773
  24. Lesbani, A., Palapa, N.R., Sayeri, R.J., Taher, T., Hidayati, N. (2021). High reusability of NiAl LDH/biochar composite in the removal methylene blue from aqueous solution. Indonesian Journal of Chemistry, 21(2), 421–434. DOI: 10.22146/ijc.56955
  25. Keyikoglu, R., Khataee, A., Yoon, Y. (2022). Layered double hydroxides for removing and recovering phosphate: Recent advances and future directions. Advances in Colloid and Interface Science, 300(December 2021), 102598. DOI: 10.1016/j.cis.2021.102598
  26. Cao, Y., Wu, X., Li, B., Tang, X., Lin, X., Li, P., Chen, H., Huang, F., Wei, C., Wei, J., Qiu, G. (2023). Ca–La layered double hydroxide (LDH) for selective and efficient removal of phosphate from wastewater. Chemosphere, 325 (January), 138378. DOI: 10.1016/j.chemosphere.2023.138378
  27. Jin, L., Zhou, X., Wen, J., Peng, L. (2022). A green route for the preparation of layered double hydroxides from basic magnesium carbonate. Magnetic Resonance Letters, 2(3), 177–185. DOI: 10.1016/j.mrl.2022.06.004
  28. Normah, N., Juleanti, N., Siregar, P.M.S.B.N., Wijaya, A., Palapa, N.R., Taher, T., Lesbani, A. (2021). Size selectivity of anionic and cationic dyes using LDH modified adsorbent with low-cost rambutan peel to hydrochar. Bulletin of Chemical Reaction Engineering & Catalysis, 16 (4), 869–880. DOI: 10.9767/BCREC.16.4.12093.869-880
  29. Tang, Y., Zhang, X., Li, X., Bai, J., Yang, C., Zhang, Y., Xu, Z., Jin, X., Jiang, Y. (2023). Facile synthesis of magnetic ZnAl layered double hydroxides and efficient adsorption of malachite green and Congo red. Separation and Purification Technology, 322 (May), 124305. DOI: 10.1016/j.seppur.2023.124305
  30. Wijaya, A., Siregar, P.M.S.B.N., Priambodo, A., Palapa, N.R., Taher, T., Lesbani, A. (2021). Innovative Modified of Cu-Al/C (C = Biochar, Graphite) Composites for Removal of Procion Red from Aqueous Solution. Science and Technology Indonesia, 6 (4), 228–234. DOI: 10.26554/sti.2021.6.4.228-234
  31. Pelalak, R., Hassani, A., Heidari, Z., Zhou, M. (2023). State-of-the-art recent applications of layered double hydroxides (LDHs) material in Fenton-based oxidation processes for water and wastewater treatment. Chemical Engineering Journal, 474 (August), 145511. DOI: 10.1016/j.cej.2023.145511
  32. Karim, A. V., Hassani, A., Eghbali, P., Nidheesh, P. V. (2022). Nanostructured modified layered double hydroxides (LDHs)-based catalysts: A review on synthesis, characterization, and applications in water remediation by advanced oxidation processes. Current Opinion in Solid State and Materials Science, 26 (1), 100965. DOI: 10.1016/j.cossms.2021.100965
  33. Shou, J., Jiang, C., Wang, F., Qiu, M., Xu, Q. (2015). Fabrication of Fe3O4/MgAl-layered double hydroxide magnetic composites for the effective decontamination of Co(II) from synthetic wastewater. Journal of Molecular Liquids, 207, 216–223. DOI: 10.1016/j.molliq.2015.03.047
  34. Tamjidi, S., Esmaeili, H., Kamyab Moghadas, B. (2019). Application of magnetic adsorbents for removal of heavy metals from wastewater: A review study. Materials Research Express, 6(10), 102004. DOI: 10.1088/2053-1591/ab3ffb
  35. Gholami, P., Dinpazhoh, L., Khataee, A., Hassani, A., Bhatnagar, A. (2020). Facile hydrothermal synthesis of novel Fe-Cu layered double hydroxide/biochar nanocomposite with enhanced sonocatalytic activity for degradation of cefazolin sodium. Journal of Hazardous Materials, 381 (April 2019), 120742. DOI: 10.1016/j.jhazmat.2019.120742
  36. Hassan, M.R., Yakout, S.M., Abdeltawab, A.A., Aly, M.I. (2021). Ultrasound facilitates and improves removal of triphenylmethane (crystal violet) dye from aqueous solution by activated charcoal: A kinetic study. Journal of Saudi Chemical Society, 25 (6), 101231. DOI: 10.1016/j.jscs.2021.101231
  37. Hu, X., Li, P., Zhang, X., Yu, B., Lv, C., Zeng, N., Luo, J., Zhang, Z., Song, J., Liu, Y. (2019). Ni-based catalyst derived from NiAl layered double hydroxide for vapor phase catalytic exchange between hydrogen and water. Nanomaterials, 9(12), 1688. DOI: 10.3390/nano9121688
  38. Din, S.U., Khan, M.S., Hussain, S., Imran, M., Haq, S., Hafeez, M., Zain-ul-Abdin, Rehman, F.U., Chen, X. (2021). Adsorptive Mechanism of Chromium Adsorption on Siltstone–Nanomagnetite–Biochar Composite. Journal of Inorganic and Organometallic Polymers and Materials, 31(4), 1608–1620. DOI: 10.1007/s10904-020-01829-7
  39. Siregar, P.M.S.B.N., Palapa, N.R., Wijaya, A., Fitri, E.S., Lesbani, A. (2021). Structural stability of ni/al layered double hydroxide supported on graphite and biochar toward adsorption of congo red. Science and Technology Indonesia, 6 (2), 85–95. DOI: 10.26554/STI.2021.6.2.85-95
  40. Din, S.U., Azeez, A., Zain-ul-Abdin, Haq, S., Hafeez, M., Imran, M., Hussain, S., Alarfaji, S.S. (2021). Investigation on Cadmium Ions Removal from Water by a Nanomagnetite Based Biochar Derived from Eleocharis Dulcis. Journal of Inorganic and Organometallic Polymers and Materials, 31 (1), 415–425. DOI: 10.1007/s10904-020-01758-5
  41. Manojkumar, M.S., Jeyajothi, K., Jagadeesan, A., Jeevanantham, V. (2022). Magnetic separation of green synthesized Fe3O4 nanoparticles on photocatalytic activity of methyl orange dye removal. Journal of the Indian Chemical Society, 99 (8), 100559. DOI: 10.1016/j.jics.2022.100559
  42. Jun, B.M., Kim, Y., Han, J., Yoon, Y., Kim, J., Park, C.M. (2019). Preparation of activated biochar-supported magnetite composite for adsorption of polychlorinated phenols from aqueous solutions. Water (Switzerland), 11 (9), 1–16. DOI: 10.3390/w11091899
  43. Hairuddin, M.N., Mubarak, N.M., Khalid, M., Abdullah, E.C., Walvekar, R., Karri, R.R. (2019). Magnetic palm kernel biochar potential route for phenol removal from wastewater. Environmental Science and Pollution Research, 26 (34), 35183–35197. DOI: 10.1007/s11356-019-06524-w
  44. Revellame, E.D., Fortela, D.L., Sharp, W., Hernandez, R., Zappi, M.E. (2020). Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Cleaner Engineering and Technology, 1 (October), 100032. DOI: 10.1016/j.clet.2020.100032
  45. Kalam, S., Abu-Khamsin, S.A., Kamal, M.S., Patil, S. (2021). Surfactant Adsorption Isotherms: A Review. ACS Omega, 6(48), 32342–32348. DOI: 10.1021/acsomega.1c04661
  46. Yadav, B.S., Dasgupta, S. (2022). Effect of time, pH, and temperature on kinetics for adsorption of methyl orange dye into the modified nitrate intercalated MgAl LDH adsorbent. Inorganic Chemistry Communications, 137 (January), 109203. DOI: 10.1016/j.inoche.2022.109203
  47. Karaca, S., Gürses, A., Açişli, Ö., Hassani, A., Kiranşan, M., Yikilmaz, K. (2013). Modeling of adsorption isotherms and kinetics of Remazol Red RB adsorption from aqueous solution by modified clay. Desalination and Water Treatment, 51 (13–15), 2726–2739. DOI: 10.1080/19443994.2012.749368
  48. Chen, X., Hossain, M.F., Duan, C., Lu, J., Tsang, Y.F., Islam, M.S., Zhou, Y. (2022). Isotherm models for adsorption of heavy metals from water - A review. Chemosphere, 307(P1), 135545. DOI: 10.1016/j.chemosphere.2022.135545
  49. Sahmoune, M.N. (2019). Evaluation of thermodynamic parameters for adsorption of heavy metals by green adsorbents. Environmental Chemistry Letters, 17 (2), 697–704. DOI: 10.1007/s10311-018-00819-z
  50. Al-Saeedi, S.I., Areej, A., Qamar, M.T., Alhujaily, A., Iqbal, S., Alotaibi, M.T., Aslam, M., Qayyum, M.A., Bahadur, A., Awwad, N.S., Jazaa, Y., Elkaeed, E.B. (2023). Isotherm and kinetic studies for the adsorption of methylene blue onto a novel Mn3O4-Bi2O3 composite and their antifungal performance. Frontiers in Environmental Science, 11 (May), 1–16. DOI: 10.3389/fenvs.2023.1156475
  51. Gülen, J., Zorbay, F. (2017). Methylene Blue Adsorption on a Low Cost Adsorbent—Carbonized Peanut Shell. Water Environment Research, 89 (9), 805–816. DOI: 10.2175/106143017x14902968254836
  52. Trifi, I.M., Trifi, B., Zendah, H., Hamrouni, B. (2021). Comparative removal of methylene blue from aqueous solution using different adsorbents. Journal of the Chilean Chemical Society, 66 (3), 5246–5250. DOI: 10.4067/S0717-97072021000305246
  53. Ngapa, Y.D., Gago, J. (2021). Optimizing of Competitive Adsorption Methylene Blue and Methyl Orange using Natural Zeolite from Ende-Flores. JKPK (Jurnal Kimia dan Pendidikan Kimia), 6(1), 39. DOI: 10.20961/jkpk.v6i1.46132
  54. Cundari, L., Saputra, E., Suranto, A., Yandriani, Y., Rosalina, R. (2020). the Effect of Adsorbent Type and Ratio on Removal and Isotherm Adsorption of Methylene Blue. Jurnal Sains Materi Indonesia, 21 (3), 115. DOI: 10.17146/jsmi.2020.21.3.5900
  55. Mohadi, R., Siregar, P.M.S.B.N., Palapa, N.R., Lesbani, A. (2022). Preparation of Zn/Al-chitosan Composite for the Selective Adsorption of Methylene Blue Dye in Water. Makara Journal of Science, 26(2), 128–136. DOI: 10.7454/mss.v26i2.1313
  56. Vezentsev, A.I., Thuy, D.M., Goldovskaya-Peristaya, L.F., Glukhareva, N.A. (2018). Adsorption of methylene blue on the composite sorbent based on bentonite-like clay and hydroxyapatite. Indonesian Journal of Chemistry, 18 (4), 733–741. DOI: 10.22146/ijc.37050
  57. Budnyak, T.M., Aminzadeh, S., Pylypchuk, I. V., Sternik, D., Tertykh, V.A., Lindström, M.E., Sevastyanova, O. (2018). Methylene Blue dye sorption by hybrid materials from technical lignins. Journal of Environmental Chemical Engineering, 6 (4), 4997–5007. DOI: 10.1016/j.jece.2018.07.041
  58. Onigbinde, M.O., Fatoye, E.O., Isola, O.B. (2022). Methylene Blue Dye Adsorption in Aqueous System using Microcrystalline Cellulose obtained from Sugarcane Bagasse. Journal of Applied Sciences and Environmental Management, 26 (12), 1943–1950. DOI: 10.4314/jasem.v26i12.8
  59. Ahmad, N., Suryani Arsyad, F., Royani, I., Lesbani, A. (2022). Adsorption of methylene blue on magnetite humic acid: Kinetic, isotherm, thermodynamic, and regeneration studies. Results in Chemistry, 4 (November), 100629. DOI: 10.1016/j.rechem.2022.100629
  60. Arabkhani, P., Asfaram, A. (2020). Development of a novel three-dimensional magnetic polymer aerogel as an efficient adsorbent for malachite green removal. Journal of Hazardous Materials, 384 (September 2019), 121394. DOI: 10.1016/j.jhazmat.2019.121394
  61. Abebe, B., Murthy, H.C.A., Amare, E. (2018). Summary on Adsorption and Photocatalysis for Pollutant Remediation: Mini Review. Journal of Encapsulation and Adsorption Sciences, 08 (04), 225–255. DOI: 10.4236/jeas.2018.84012
  62. Ren, S., Wang, Y., Han, Z., Zhang, Q., Cui, C. (2022). Synthesis of polydopamine modified MgAl-LDH for high efficient Cr(VI) removal from wastewater. Environmental Research, 215 (P1), 114191. DOI: 10.1016/j.envres.2022.114191
  63. Fito, J., Abewaa, M., Nkambule, T. (2023). Magnetite-impregnated biochar of parthenium hysterophorus for adsorption of Cr(VI) from tannery industrial wastewater. Applied Water Science, 13 (3), 1–23. DOI: 10.1007/s13201-023-01880-y
  64. Kheradmand, A., Negarestani, M., Kazemi, S., Shayesteh, H., Javanshir, S., Ghiasinejad, H. (2022). Adsorption behavior of rhamnolipid modified magnetic Co/Al layered double hydroxide for the removal of cationic and anionic dyes. Scientific Reports, 12(1), 1–17. DOI: 10.1038/s41598-022-19056-0

Last update:

No citation recorded.

Last update:

No citation recorded.