skip to main content

Synthesis of W-Doped TiO2 Material Ratio Using One-Step Solvothermal Method and Treatment Orientation of Volatile Organic Compounds

1Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam

2Faculty of Food and Environmental Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam

Received: 17 May 2023; Revised: 10 Nov 2023; Accepted: 11 Nov 2023; Available online: 14 Nov 2023; Published: 11 Dec 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

In TiO2 photocatalysts have been interested in the world thanks to many advantages in handling toxic compounds, with great potential for practical application at low cost. However, the electron-hole recombination rate is still high and can not be processed under visible light, which is a major limitation of this material. Modification of TiO2 by W6+ is a possible solution, however there is still little research and the optimal W6+ ratio in small amounts is still low. The material was synthesized by a one-stage solvothermal method at 200 ºC for 10 hours, without using any surfactants or post-reaction calcination with doped W molar ratios of 0.5%, 1%, and 1.5%. The result was that the TiW-1.5% catalyst sample had the highest specific surface area of 175 m2/g, higher than pure TiO2 of 160.0 m2/g. The W6+ ion successfully replaced Ti4+ in the TiO2 crystal lattice, reducing the band gap energy of the catalytic sample to 2.88 eV with the TiW-1.5% sample. For TiW-0%, the formaldehyde decomposition ability is 53.50%. Doping W into TiO2 increased catalytic efficiency, with a material sample with an optimal modified W content of 1.5% mol W having a formaldehyde decomposition efficiency of 71.98%. Research results show that W modification can improve the activity of TiO2 and increase the efficiency of volatile organic compound treatment. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Volatile Organic Compounds; VOC; W-doped TiO2; solvothermal; formaldehyde
Funding: Nguyen Tat Thanh University

Article Metrics:

  1. Antonelli, M., Donelli, D., Barbieri, G., Valussi, M., Maggini, V., Firenzuoli, F. (2020). Forest volatile organic compounds and their effects on human health: A state-of-the-art review. International Journal of Environmental Research and Public Health, 17(18), 6506. DOI: 10.3390/ijerph17186506
  2. Stephen, L. (2020). Titanium dioxide versatile solid crystalline: An overview. Intech Open
  3. Mergenbayeva, S., Kumarov, A., Atabaev, T. Sh., Hapeshi, E., Vakros, J., Mantzavinos, D., Poulopoulos, S. G. (2022). Degradation of 4-Tert-Butylphenol in Water Using Mono-Doped (M1: Mo, W) and Co-Doped (M2-M1: Cu, Co, Zn) Titania Catalysts. Nanomaterials, 12(14), 2326. DOI: 10.3390/nano12142326
  4. Ozimek, M., Palewicz, M., Hreniak, A. (2016). Optical Properties of TiO2 Nanopowder Doped by Silver (Copper) during Synthesis or PVD Method. Acta Physica Polonica A, 129 (6), 1214–1219. DOI: 10.12693/APhysPolA.129.1214
  5. Thambiliyagodage, C., Mirihana, S. (2021). Photocatalytic activity of Fe and Cu co-doped TiO2 nanoparticles under visible light. Journal of Sol-Gel Science and Technology, 99 (1), 109–121. DOI: 10.1007/s10971-021-05556-4
  6. Guo, Z., Wu, H., Li, M., Tang, T., Wen, J., Li, X. (2020). Phosphorus-doped graphene quantum dots loaded on TiO2 for enhanced photodegradation. Applied Surface Science, 526, 146724. DOI: 10.1016/j.apsusc.2020.146724
  7. Senthilvelan, S., Chandraboss, V.L., Karthikeyan, B., Natanapatham, L., Murugavelu, M. (2013). TiO2, ZnO and nanobimetallic silica catalyzed photodegradation of methyl green. Materials Science in Semiconductor Processing, 16 (1), 185–192. DOI: 10.1016/j.mssp.2012.04.018
  8. Humayun, M., Raziq, F., Khan, A., Luo, W. (2018). Modification strategies of TiO2 for potential applications in photocatalysis: A critical review. Green Chemistry Letters and Reviews, 11 (2), 86–102. DOI: 10.1080/17518253.2018.1440324
  9. Ullah, I., Haider, A., Khalid, N., Ali, S., Ahmed, S., Khan, Y., Ahmed, N., Zubair, M. (2018). Tuning the band gap of TiO2 by tungsten doping for efficient UV and visible photodegradation of Congo red dye. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 204, 150–157. DOI: 10.1016/j.saa.2018.06.046
  10. Teh, C. M., Mohamed, A.R. (2011). Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review. Journal of Alloys and Compounds, 509 (5), 1648–1660. DOI: 10.1016/j.jallcom.2010.10.181
  11. Filippatos, P.-P., Kelaidis, N., Vasilopoulou, M., Davazoglou, D., Chroneos, A. (2021). Structural, Electronic, and Optical Properties of Group 6 Doped Anatase TiO2: A Theoretical Approach. Applied Sciences, 11(4), 1657. DOI: 10.3390/app11041657
  12. Mayoufi, A., Faouzi Nsib, M., Houas, A. (2014). Doping level effect on visible-light irradiation W-doped TiO2–anatase photocatalysts for Congo red photodegradation. Comptes. Rendus. Chimie, 17(7–8), 818–823. DOI: 10.1016/j.crci.2014.01.019
  13. Santos, E., Catto, A.C., Peterline, A.F., Avansi Jr, W. (2022). Transition metal (Nb and W) doped TiO2 nanostructures: The role of metal doping in their photocatalytic activity and ozone gas-sensing performance. Applied Surface Science, 579, 152146. DOI: 10.1016/j.apsusc.2021.152146
  14. Sathasivam, S., Bhachu, D.S., Lu, Y., Chadwick, N., Althabaiti, S.A., Alyoubi, A.O., Basahel, S.N., Carmalt, C.J., Parkin, I.P. (2015). Tungsten Doped TiO2 with Enhanced Photocatalytic and Optoelectrical Properties via Aerosol Assisted Chemical Vapor Deposition. Scientific Reports, 5(1), 10952. DOI: 10.1038/srep10952
  15. Choi, W., Termin, A., Hoffmann, M. R. (1994). The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. The Journal of Physical Chemistry, 98 (51), 13669–13679. DOI: 10.1021/j100102a038
  16. Pham, H.Q., Huynh, T.T., Bach, L.G., Ho, V.T.T. (2021). Synthesis and characterization the multifunctional nanostructures TixW1-xO2 (x = 0.5; 0.6; 0.7; 0.8) supports as robust non-carbon support for Pt nanoparticles for direct ethanol fuel cells. International Journal of Hydrogen Energy, 46(48), 24877–24890. DOI: 10.1016/j.ijhydene.2020.03.066
  17. Liao, Y. , Que, W. , Jia, Q. , He, Y. , Zhang, J. , Zhong, P. (2012). Controllable synthesis of brookite/anatase/rutile TiO2 nanocomposites and single-crystalline rutile nanorods array. Journal of Materials Chemistry, 22, 7937–7944. DOI: 10.1039/c2jm16628c
  18. Maira, A.J. , Yeung, K.L. , Lee, C.Y. , Yue, P.L. , Chan, C.K. (2000). Size Effects in Gas-Phase Photo-oxidation of Trichloroethylene Using Nanometer-Sized TiO2 Catalysts. Journal of Catalysis, 192, 185–196. DOI: 10.1006/jcat.2000.2838
  19. Jung, K.Y. Park, S.B. (2001). Effect of calcination temperature and addition of silica, zirconia, alumina on the photocatalytic activity of titania. Korean Journal of Chemical Engineering, 18, 879–888. DOI: 10.1007/BF02705612
  20. Ho, V.T.T. , Chau, D.H. , Bui, K.Q. , Nguyen, N.T.T. , Tran, T.K.N. , Bach, L.G. , Truong, S.N. (2022). A High-Performing Nanostructured Ir Doped-TiO2 for Efficient Photocatalytic Degradation of Gaseous Toluene. Inorganics, 10, 29. DOI: 10.3390/inorganics10030029
  21. Komatani, S. , Aoyama, T. , Nakazawa, T. , Tsuji, K. (2013). Comparison of SEM-EDS, Micro-XRF and Confocal Micro-XRF for Electric Device Analysis. e-Journal of Surface Science and Nanotechnology, 11, 133–137. DOI: 10.1380/ejssnt.2013.133

Last update:

No citation recorded.

Last update:

No citation recorded.