skip to main content

Recycle Performance of Heterogeneous Catalyst Metal Oxides-Based Layered Double Hydroxide for Oxidative Desulfurization Process of 4-methyldibenzothiophene

1Doctoral Program of Natural Science, Graduate School Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Sumatera Selatan, 30139, Indonesia

2Research Center Inorganic Center of Inorganic Materials and Complexes, Universitas Sriwijaya, Sumatera Selatan, 30139, Indonesia

3Department of Pharmacy, Faculty of Mathematics and Natural Science, Sriwijaya University, Indralaya, Ogan Ilir, 30662, Indonesia

4 Master Program of Material Science, Graduate School Universitas Sriwijaya, Sumatera Selatan, 30139, Indonesia

View all affiliations
Received: 7 Sep 2023; Revised: 7 Oct 2023; Accepted: 10 Oct 2023; Available online: 16 Oct 2023; Published: 11 Dec 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The desulfurization of oil must be resolved as soon as possible due to a variety of issues, including environmental contamination and protection regulations. It was believed that oxidative desulfurization (ODS) was the most promising method. In this research, metal oxide-based layered double hydroxides (TiO2@Ni-Al and ZnO@Ni-Al) were effectively synthesized for the ODS of 4-methyldibenzothiophene (4-MDBT). TiO2@Ni-Al and ZnO@Ni-Al exhibited superior catalytic performance and high recycling capacity, achieving a 99% removal rate after five reactions in 30 min. The heterogeneous catalyst TiO2@Ni-Al/ZnO@Ni-Al is easy to separate and recover from a reaction system. Increased temperature facilitates the transformation of 4-MDBT into 4-MDBTO2. The influence of H2O2's rapid decomposition rate, which can inhibit oxidation reactions, reduces the catalytic activity as the temperature increases. 4-MDBT Sulphur removal on TiO2@Ni-Al and ZnO@Ni-Al is 99.48 and 99.51%, respectively. TiO2@Ni-Al and ZnO@Ni-Al have great potential for use in the industry based on these results. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Recycle catalyst; oxidative desulfurization; heterogeneous; metal oxide; 4-methyldibenzothiophene.
Funding: Hibah Profesi Universitas Sriwijaya under contract SP DIPA-023.17.2.677515/2023, SK Rektor 0187/UN9.3.1/SK/2023

Article Metrics:

  1. Wu, C., Chen, C., Qi, Z., Chen, J., Wang, Q., Ye, C., Qiu, T. (2023). Facile Synthesis of Efficient Pentaethylenehexamine-Phosphotungstic Acid Heterogeneous Catalysts for Oxidative Desulfurization. Chinese Journal of Chemical Engineering, In Press. DOI: 10.1016/j.cjche.2023.04.004
  2. Wu, P., Song, X., Chen, L., He, L., Wu, Y., Tao, D., He, J., Deng, C., Lu, L., Chao, Y., Hua, M., Zhu, W. (2022). Few-layered hexagonal boron nitride nanosheets stabilized Pt NPs for oxidation promoted adsorptive desulfurization of fuel oil. Green Energy & Environment, In Press. DOI: 10.1016/j.gee.2022.08.003
  3. Chen, H., Liang, C., Xun, S., Yu, Z., Wu, C., He, M., Li, H., Zhu, W. (2023). Oxygen vacancy regulation strategy in V-Nb mixed oxides catalyst for enhanced aerobic oxidative desulfurization performance. Journal of Colloid and Interface Science, 641, 289–298. DOI: 10.1016/j.jcis.2023.02.155
  4. Pham, X.N., Nguyen, M.B., Ngo, H.S., Doan, H. V. (2020). Highly efficient photocatalytic oxidative desulfurization of dibenzothiophene with sunlight irradiation using green catalyst of Ag@AgBr/Al-SBA-15 derived from natural halloysite. Journal of Industrial and Engineering Chemistry, 90, 358–370. DOI: 10.1016/j.jiec.2020.07.037
  5. Mujahid, A., Maryam, A., Afzal, A., Zafar Bajwa, S., Hussain, T., Imran Din, M., Latif, U., Irshad, M. (2020). Molecularly imprinted poly(methyl methacrylate)-nickel sulfide hybrid membranes for adsorptive desulfurization of dibenzothiophene. Separation and Purification Technology, 237, 116453. DOI: 10.1016/j.seppur.2019.116453
  6. Flihh, S.M., Ammar, S.H. (2022). Zeolitic imidazolate framework grafted by cobalt tungstate as an efficient photocatalyst for photocatalytic oxidative desulfurization of dibenzothiophene. Materials Science in Semiconductor Processing, 149, 106894. DOI: 10.1016/j.mssp.2022.106894
  7. Chen, H., Hou, S., Cui, H., Wang, C., Zhang, M., Li, H., Xu, H., Wu, J., Zhu, W. (2023). Construction of amphiphilic and polyoxometalate poly(ionic liquids) for enhanced oxidative desulfurization in fuel. Journal of Molecular Liquids, 379, 121650. DOI: 10.1016/j.molliq.2023.121650
  8. Mgidlana, S., Nyokong, T. (2021). Photocatalytic desulfurization of dibenzothiophene using asymmetrical zinc(II) phthalocyanines conjugated to silver-magnetic nanoparticles. Inorganica Chimica Acta, 514, 119970. DOI: 10.1016/j.ica.2020.119970
  9. Salem, H.M., Abdelrahman, A.A. (2023). Sono-catalytic oxidative desulfurization of fuels using Fe6W18O70@ZrFe2O5. Journal of Alloys and Compounds, 956, 170275. DOI: 10.1016/j.jallcom.2023.170275
  10. Mao, S.-X., Song, J.-Y., Zhu, W.-S., Li, H.-M., Pang, J.-Y., Dang, D.-B., Bai, Y. (2023). Heterogeneous oxidative desulfurization of fuels using amphiphilic mesoporous phosphomolybdate-based poly(ionic liquid) over a wide temperature range. Fuel, 352, 128982. DOI: 10.1016/j.fuel.2023.128982
  11. Masoumi, S., Hosseini, S.A. (2020). Desulfurization of di-benzothiophene from gasoil model using Ni-Co2, Ni-Fe2 and Co-Fe2 nano layered-double hydroxides as photocatalysts under visible light. Fuel, 277, 118137. DOI: 10.1016/j.fuel.2020.118137
  12. Pham, X.N., Nguyen, B.M., Thi, H.T., Van Doan, H. (2018). Synthesis of Ag-AgBr/Al-MCM-41 nanocomposite and its application in photocatalytic oxidative desulfurization of dibenzothiophene. Advanced Powder Technology, 29(8), 1827–1837. DOI: 10.1016/j.apt.2018.04.019
  13. Mahmoudi, V., Mojaverian Kermani, A., Ghahramaninezhad, M., Ahmadpour, A. (2021). Oxidative desulfurization of dibenzothiophene by magnetically recoverable polyoxometalate-based nanocatalyst: Optimization by response surface methodology. Molecular Catalysis, 509, 111611. DOI: 10.1016/j.mcat.2021.111611
  14. Kang, L., Liu, H., He, H., Yang, C. (2018). Oxidative desulfurization of dibenzothiophene using molybdenum catalyst supported on Ti-pillared montmorillonite and separation of sulfones by filtration. Fuel, 234, 1229–1237. DOI: 10.1016/j.fuel.2018.07.148
  15. Song, Y., Bai, J., Jiang, S., Yang, H., Yang, L., Wei, D., Bai, L., Wang, W., Liang, Y., Chen, H. (2021). Co-Fe-Mo mixed metal oxides derived from layered double hydroxides for deep aerobic oxidative desulfurization. Fuel, 306, 121751. DOI: 10.1016/j.fuel.2021.121751
  16. Muhammad, Y., Shoukat, A., Rahman, A.U., Rashid, H.U., Ahmad, W. (2018). Oxidative desulfurization of dibenzothiophene over Fe promoted Co–Mo/Al2O3 and Ni–Mo/Al2O3 catalysts using hydrogen peroxide and formic acid as oxidants. Chinese Journal of Chemical Engineering, 26(3), 593–600. DOI: 10.1016/j.cjche.2017.05.015
  17. Julião, D., Gomes, A.C., Cunha-Silva, L., Pillinger, M., Gonçalves, I.S., Balula, S.S. (2022). Dichloro and dimethyl dioxomolybdenum(VI)-bipyridine complexes as catalysts for oxidative desulfurization of dibenzothiophene derivatives under extractive conditions. Journal of Organometallic Chemistry, 967, 122336. DOI: 10.1016/j.jorganchem.2022.122336
  18. Moghadam, S.A., Mazloom, G., Akbari, A., Banisharif, F. (2022). Supported vanadium oxide catalyst over HY-zeolite-alumina composite fabricated by extrusion for oxidative desulfurization of dibenzothiophene. Molecular Catalysis, 532, 112731. DOI: 10.1016/j.mcat.2022.112731
  19. Kayedi, N., Samimi, A., Asgari Bajgirani, M., Bozorgian, A. (2021). Enhanced oxidative desulfurization of model fuel: A comprehensive experimental study. South African Journal of Chemical Engineering, 35, 153–158. DOI: 10.1016/j.sajce.2020.09.001
  20. Mgidlana, S., Nwahara, N., Nyokong, T. (2021). Photocatalytic desulfurization of dibenzothiophene using methoxy substituted asymmetrical zinc(II) phthalocyanines conjugated to metal tungstate nanomaterials. Polyhedron, 197, 115053. DOI: 10.1016/j.poly.2021.115053
  21. Manríquez-Ramírez, M.E., Valdez, M.T., Castro, L.V., Flores, M.E., Ortiz-Islas, E. (2022). Application of CeO2-V2O5 catalysts in the oxidative desulfurization of 4,6-dimethyl dibenzothiophene as a model reaction to remove sulfur from fuels. Materials Research Bulletin, 153, 111864. DOI: 10.1016/j.materresbull.2022.111864
  22. Haruna, A., Merican, Z.M.A., Musa, S.G., Rahman, M.B.A. (2023). MOF-808(Zr)-supported with Keggin Polyoxometalates as an efficient oxidative desulfurization catalyst. Journal of the Taiwan Institute of Chemical Engineers, 147, 104919. DOI: 10.1016/j.jtice.2023.104919
  23. Liu, G., Zhang, X., Liu, H., He, Z., Show, P.L., Vasseghian, Y., Wang, C. (2023). Biochar/layered double hydroxides composites as catalysts for treatment of organic wastewater by advanced oxidation processes: A review. Environmental Research, 234, 116534. DOI: 10.1016/j.envres.2023.116534
  24. Mohadi, R., Ahmad, N., Wibiyan, S., Zahara, Z.A., Fitri, E.S., Mardiyanto, M., Royani, I., Lesbani, A. (2023). Synthesis of Zn/Al-ZnO Composite Using Zn/Al-Layered Double Hydroxide for Oxidative Desulfurization of 4-Methyldibenzothiophene. Science and Technology Indonesia, 8(4), 701–709. DOI: 10.26554/sti.2023.8.4.701-709
  25. Li, M., Li, P., Zhang, L., Chen, M., Tang, J., Qin, C., Ling Jie Lee, S., Lin, S. (2022). Facile fabrication of ZnO decorated ZnFe-layered double hydroxides @ biochar nanocomposites for synergistic photodegradation of tetracycline under visible light. Chemical Engineering Journal, 434, 134772. DOI: 10.1016/j.cej.2022.134772
  26. Modwi, A., Basith, N.M., Ghoniem, M.G., Ismail, M., Ben Aissa, M.A., Khezami, L., Bououdina, M. (2023). Efficient Pb(II) adsorption in aqueous solution by hierarchical 3D/2D TiO2/CNNS nanocomposite. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 289, 116191. DOI: 10.1016/j.mseb.2022.116191
  27. Intachai, S., Nakato, T., Khaorapapong, N. (2021). ZnO decorated on low carbonate NiAl-layered double hydroxide as efficient photocatalyst for methyl orange degradation. Applied Clay Science, 201, 105927. DOI: 10.1016/j.clay.2020.105927
  28. Karim, A.V., Hassani, A., Eghbali, P., Nidheesh, P.V. (2022). Nanostructured modified layered double hydroxides (LDHs)-based catalysts: A review on synthesis, characterization, and applications in water remediation by advanced oxidation processes. Current Opinion in Solid State and Materials Science, 26(1), 100965. DOI: 10.1016/j.cossms.2021.100965
  29. Wu, M., Chang, B., Lim, T.T., Oh, W. Da, Lei, J., Mi, J. (2018). High-sulfur capacity and regenerable Zn-based sorbents derived from layered double hydroxide for hot coal gas desulfurization. Journal of Hazardous Materials, 360, 391–401. DOI: 10.1016/j.jhazmat.2018.08.015
  30. Durak, H., Genel, S. (2020). Catalytic hydrothermal liquefaction of lactuca scariola with a heterogeneous catalyst: The investigation of temperature, reaction time and synergistic effect of catalysts. Bioresource Technology, 309, 123375. DOI: 10.1016/j.biortech.2020.123375
  31. Palapa, N.R., Ahmad, N., Wijaya, A., Zahara, Z.A. (2023). Facile Fabrication of Layered Double Hydroxide-Lignin for Efficient Adsorption of Malachite Green. Science and Technology Indonesia, 8(2), 305–311. DOI: 10.26554/sti.2023.8.2.305-311
  32. Ahmad, N., Suryani Arsyad, F., Royani, I., Mega Syah Bahar Nur Siregar, P., Taher, T., Lesbani, A. (2023). High regeneration of ZnAl/NiAl-Magnetite humic acid for adsorption of Congo red from aqueous solution. Inorganic Chemistry Communications, 150, 110517. DOI: 10.1016/j.inoche.2023.110517
  33. Sadare, O.O., Ayeni, A.O., Daramola, M.O. (2022). Evaluation of adsorption and kinetics of neem leaf powder (Azadirachta indica) as a bio-sorbent for desulfurization of dibenzothiophene (DBT) from synthetic diesel. Journal of Saudi Chemical Society, 26(2), 101433. DOI: 10.1016/j.jscs.2022.101433
  34. Zhao, S.Z., Lu, Y., Lu, R., Hu, Y. Da, Rodriguez, R.D., Chen, J.J. (2023). Constructing BiOBr/TiO2 heterostructure nanotubes for enhanced adsorption/photocatalytic performance. Journal of Water Process Engineering, 54, 103972. DOI: 10.1016/j.jwpe.2023.103972
  35. Cui, J., Ye, L., Chen, X., Li, J., Yang, B., Yang, M., Yang, Q., Yun, D., Sun, S. (2023). Simultaneously promoting adsorption and charge separation in Z-scheme ZnO/Cu2O heterojunctions for efficient removal of tetracycline. Applied Surface Science, 638, 158046. DOI: 10.1016/j.apsusc.2023.158046
  36. Zhang, K., Wang, Y., Li, L., Jia, L. (2023). Fabrication of alginate-based nanofibers loaded with ZnO nanoparticles for adsorption of tetracyclines from environmental waters. Materials Today Communications, 34, 105214. DOI: 10.1016/j.mtcomm.2022.105214
  37. Ahlawat, W., Dilbaghi, N., Kumar, R., Singhal, N.K., Kaushik, A., Kumar, S. (2023). Adsorption of harmful dyes and antimicrobial studies utilizing recyclable ZnO, its composites with conventionally used activated carbon, and waste orange peel as a greener approach. Journal of Environmental Chemical Engineering, 11(3), 110268. DOI: 10.1016/j.jece.2023.110268
  38. Yu, J., Liu, Z., Yu, F., Bao, W., Peng, B., Wang, G., Zhang, L., Xu, Y., Wang, F. (2022). Enhanced photoelectrochemical performance of ZnO/NiFe-layered double hydroxide for water splitting: Experimental and photo-assisted density functional theory calculations. Journal of Colloid and Interface Science, 623, 285–293. DOI: 10.1016/j.jcis.2022.05.001
  39. Dang, C., Yang, W., Zhou, J., Cai, W. (2021). Porous Ni-Ca-Al-O bi-functional catalyst derived from layered double hydroxide intercalated with citrate anion for sorption-enhanced steam reforming of glycerol. Applied Catalysis B: Environmental, 298, 120547. DOI: 10.1016/j.apcatb.2021.120547
  40. Abdel-Hady, E.E., Mahmoud, R., Hafez, S.H.M., Mohamed, H.F.M. (2022). Hierarchical ternary ZnCoFe layered double hydroxide as efficient adsorbent and catalyst for methanol electrooxidation. Journal of Materials Research and Technology, 17, 1922–1941. DOI: 10.1016/j.jmrt.2022.01.042
  41. Liu, Y., Zhou, R., Qu, J., Han, F., Zhang, S., Xu, X. (2022). Cu nanoparticles-dispersed Mg-Al layered double hydroxides as efficient catalysts for CO2 conversion with propargyl alcohols. Applied Catalysis A: General, 630, 118444. DOI: 10.1016/j.apcata.2021.118444
  42. Naseri, H., Mazloom, G., Akbari, A., Banisharif, F. (2021). Investigation of Ni, Co, and Zn promoters in on Mo/HY modified zeolite for developing an efficient bimetallic catalyst for oxidative desulfurization of dibenzothiophene. Microporous and Mesoporous Materials, 325, 111341. DOI: 10.1016/j.micromeso.2021.111341
  43. Ahmad, N., Yuliasari, N., Arsyad, F.S., Royani, I., Mohadi, R., Lesbani, A. (2023). Catalytic oxidative desulfurization of dibenzothiophene by heterogeneous M2+/Al-layered double hydroxide (M2+ = Zn, Mg, Ni) modified zinc oxide. Iranian Journal of Catalysis, 13(1), 35–45. DOI: 10.30495/IJC.2023.1972458.1973
  44. Ye, J., Wen, J., Zhao, D., Zhang, P., Li, A., Zhang, L., Zhang, H., Wu, M. (2020). Macroporous 3D carbon-nitrogen (CN) confined MoOx catalyst for enhanced oxidative desulfurization of dibenzothiophene. Chinese Chemical Letters, 31(10), 2819–2824. DOI: 10.1016/j.cclet.2020.08.004
  45. López Luna, M., Taboada-Ortega, M.A., Alvarez-Amparán, M.A., Cedeño-Caero, L. (2021). Effect of iron incorporation on W based catalysts for oxidative desulfurization of dibenzothiophene compounds. Catalysis Today, 394–396, 336–347. DOI: 10.1016/j.cattod.2021.08.007
  46. Wei, S., He, H., Cheng, Y., Yang, C., Zeng, G., Kang, L., Qian, H., Zhu, C. (2017). Preparation, characterization, and catalytic performances of cobalt catalysts supported on KIT-6 silicas in oxidative desulfurization of dibenzothiophene. Fuel, 200, 11–21. DOI: 10.1016/j.fuel.2017.03.052
  47. Mohadi, R., Palapa, N.R., Wibiyan, S., Mardiyanto, M., Rohmatullaili, R., Fitri, E.S., Lesbani, A. (2023). Catalytic Oxidative Desulfurization of 4-Methyldibenzothiophene by Ni/Al Modified Titanium Dioxide and Zinc Oxide. Science and Technology Indonesia, 8(3), 414–421. DOI: 10.26554/sti.2023.8.3.414-421
  48. Ahmad, N., Badaruddin, M., Yuliasari, N., Arsyad, F.S., Lesbani, A. (2022). Highly Efficient Catalytic Oxidative Desulfurization of Dibenzothiophene using Layered Double Hydroxide Modified Polyoxometalate Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 17(4), 821–830. DOI: 10.9767/bcrec.17.4.16373.821-830
  49. Kermani, A.M., Mahmoodi, V., Ghahramaninezhad, M., Ahmadpour, A. (2021). Highly efficient and green catalyst of {Mo132} nanoballs supported on ionic liquid-functionalized magnetic silica nanoparticles for oxidative desulfurization of dibenzothiophene. Separation and Purification Technology, 258, 117960. DOI: 10.1016/j.seppur.2020.117960

Last update:

No citation recorded.

Last update:

No citation recorded.