skip to main content

1D/2D Rod-sheet Shape Bi2S3 Photocatalyst for Photocatalytic Reduction Cr(VI) under Visible Light

1School of Chemistry and Environmental Science, Yili Normal University, 835000, Yining, China

2School of Materials and Chemical Engineering, Xuzhou University of Technology, 221018, Xuzhou, China

Received: 14 Oct 2023; Revised: 10 Nov 2023; Accepted: 11 Nov 2023; Available online: 15 Nov 2023; Published: 11 Dec 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The crystal structure and morphology of photocatalysts play a crucial role in determining their photocatalytic performance. In this study, we synthesized and investigated 1D/2D Bi2S3 as a potential visible-light-activated photocatalyst for the reduction of aqueous Cr(VI). The 1D/2D Bi2S3 was synthesized using hydrothermal synthesis technique by heating Bi2(H2O)2(SO4)2(OH)2 precursor and sodium sulfide at 190 ℃ for 24 h, where the molar ratio of Bi to S elements in the reaction reagents was changed from 1:6 to 2:3. The structure, composition, and optoelectronic properties of the prepared Bi2S3 were characterized using X-ray diffraction, UV-vis diffuse reflectance spectra, field emission scanning electron microscopy, electrochemical impedance spectra, and transient photocurrent. It is shown that the prepared orthorhombic Bi2S3 has full-spectrum photoresponsivity. Bi2S3-B with 1D/2D heterogeneous structure exhibits the lowest charge carrier transport resistance, and its photocurrent intensity is nearly twice that of Bi2S3-C. It demonstrates the highest photocatalytic activity in visible-light photocatalytic reduction of aqueous Cr(VI), with a reduction rate of 54.5% after 140 minutes of light exposure. According to the bandgap of Bi2S3 and radical scavenger experiments, a reaction mechanism for the photocatalytic reduction of Cr(VI) by Bi2S3 was proposed. Furthermore, the results highlight the economic and environmentally friendly nature of the hydrothermal synthesis method using homemade precursors, which allows for the regulation of Bi2S3 morphology and the enhancement of its visible photocatalytic activity. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Bi2S3; Bi2(H2O)2(SO4)2(OH)2 precursor; hydrothermal synthesis; Cr(VI) reduction; 1D/2D materials
Funding: the Natural Science Foundation of China (NO. 22202169); the Science and Technology Project of Xuzhou (NO. KC21286); Innovation and entrepreneurship projects for college students (xcx2023007, xcx2023018).

Article Metrics:

  1. Nawaz, A., Goudarzi, S., Asghari, M. A., Pichiah, S., Selopal, G.S., Rosei, F., Wang, Z.M., Zarrin, H. (2021). Review of hybrid 1D/2D photocatalysts for light-harvesting applications. ACS Applied Nano Materials, 4 (11), 11323-11352. DOI: 10.1021/acsanm.1c01014
  2. Hou, H., Zhang, X. (2020). Rational design of 1D/2D heterostructured photocatalyst for energy and environmental applications. Chemical Engineering Journal, 395, 125030. DOI: 10.1016/j.cej.2020.125030
  3. Kadem, A.J., Tan, Z.M., Suntharam, N.M., Pung, S., Ramakrishnan, S. (2023). Synthesis of CuO, ZnO and SnO2 Coupled TiO2 photocatalyst particles for enhanced photodegradation of rhodamine B dye. Bulletin of Chemical Reaction Engineering & Catalysis, 18 (3), 506-520. DOI: 10.9767/bcrec.19532
  4. Qian, H., Wang, B., Liu, M., Zhao, N., Wang, Z., Peng, Y. (2021). Unique 1D/2D Bi2O2CO3 nanorod-Bi2WO6 nanosheet heterostructure: synthesis and photocatalytic performance. CrystEngComm, 23 (35), 6128-6136. DOI: 10.1016/j.solidstatesciences.2017.07.003
  5. Li, J., Wu, C., Dong, B., Li, J., Zhao, L., Wang, S. (2022). 1D/2D TiO2/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient hydrogen evolution. Chinese Journal of Catalysis, 42 (2), 339-349. DOI: 10.1016/s1872-2067(21)63875-5
  6. Jiang, M., Xu, J., Munroe, P., Xie, Z. (2023). 1D/2D CdS/WS2 heterojunction photocatalyst: first-principles insights for hydrogen production, Materials Today Communications, 35, 105991. DOI: 10.1016/j.mtcomm.2023.105991
  7. Gong, H., Zhao, C., Niu, G., Zhang, W., Wang, F. (2020). Construction of 1D/2D α-Fe2O3/SnO2 Hybrid Nanoarrays for Sub-ppm Acetone Detection, Research. DOI: 10.34133/2020/2196063
  8. Zhu, Z., Xia, H., Li, X., Li, H. (2023). A novel 1D/2D rod-sheet shape Cu3Mo2O9/g-C3N4 heterojunction photocatalyst with enhanced photocatalytic performance for ciprofloxacin, Optical Materials, 136, 113420. DOI: 10.1016/j.optmat.2022.113420
  9. Li, Y., Wang, L., Cai, T., Zhang, S., Liu, Y., Song, Y., Dong, X., Hu, L. (2017). Glucose-assisted synthesize 1D/2D nearly vertical CdS/MoS2 heterostructures for efficient photocatalytic hydrogen evolution, Chemical Engineering Journal, 321, 366-374. DOI: 10.1016/j.cej.2017.03.139
  10. Wang, X., Ren, Y., Li, Y., Zhang, G. (2021). Fabrication of 1D/2D BiPO4/g-C3N4 heterostructured photocatalyst with enhanced photocatalytic efficiency for NO removal, Chemosphere, 287, 132098. DOI: 10.1016/j.chemosphere.2021.132098
  11. Li, Y., Huang, L., Li, B., Wang, X., Zhou, Z., Li, J., Wei, Z. (2016). Co-nucleus 1D/2D Heterostructures with Bi2S3 Nanowire and MoS2 Monolayer: One-Step Growth and Defect-Induced Formation Mechanism, ACS Nano, 10 (9), 8938-8946. DOI: 10.1021/acsnano.6b04952
  12. Vattikuti, S.P., Shim, J., Byon, C. (2018). 1D Bi2S3 nanorod/2D e-WS2 nanosheet heterojunction photocatalyst for enhanced photocatalytic activity, Journal of Solid State Chemistry, 258, 526-535. DOI: 10.1016/j.jssc.2017.11.017
  13. Wang, X., Zhang, H., Wang, W., Zhang, G., Chu, X., Cao, J. (2022). Synthesis of 1D/2D Bi2S3@Ti3C2 heterojunction with superior photocatalytic removal ability of tetracycline hydrochloride, Materials Letters, 326, 132907. DOI: 10.1016/j.matlet.2022.132907
  14. Motaung, M.P., Onwudiwe, D.C., Lei, W. (2021). Microwave-assisted synthesis of Bi2S3 and Sb2S3 nanoparticles and their photoelectrochemical properties, ACS Omega, 6 (29), 18975-18987. DOI: 10.1021/acsomega.1c02249
  15. Kashmery, H.A., EI-Hout, S.I. (2023). Bi2S3/Bi2O3 nanocomposites as effective photocatalysts for photocatalytic degradation of tetracycline under visible-light exposure, Optical Materials, 135, 113231. DOI: 10.1016/j.optmat.2022.113231
  16. Helal, A., Harraz, F.A., Ismail, A.A., Sami, T.M., Ibrahim, I.A. (2017). Hydrothermal synthesis of novel heterostructured Fe2O3/Bi2S3 nanorods with enhanced photocatalytic activity under visible light, Applied Catalysis B: Environmental, 213, 18-27. DOI: 10.1016/j.apcatb.2017.05.009
  17. Zhang, R., Li, Y., Zhang, W., Sheng, Y., Wang, M., Liu, J., Liu, Y., Zhao, C., Zeng, K. (2021). Fabrication of Cu2O/Bi2S3 heterojunction photocatalysts with enhanced visible light photocatalytic mechanism and degradation pathways of tetracycline, Journal of Molecular Structure, 1229, 129581. DOI: 10.1016/j.molstruc.2020.129581
  18. Helal, A., Harraz, F.A., Ismail, A.A. (2021). One-step synthesis of heterojunction Cr2O3 nanoparticles decorated Bi2S3 nanorods with enhanced photocatalytic activity for mineralization of organic pollutants, Journal of Photochemistry and Photobiology A: Chemistry, 419, 113468. DOI: 10.1016/j.jphotochem.2021.113468
  19. Li, X., Jun, L., Xiao, J., Xu, Y., Yang, C., Tang, J., Zhao, K., Gong, X., Zhou, X., Zou, H. (2022). Study on the relationship between Bi2S3 with different morphologies and its photocatalytic hydrogen production performance, Journal of Analytical Science and Technology, 13 (1), 1-8. DOI: 10.1186/s40543-022-00325-6
  20. Arumugam, J., George, A., Venci, X., Raj, A.D., Irudayaraj, A.A., Josphine, R.L., Sundaram, S.J., Al-onazi, W.A., Al-Mohaimeed, A.M., Chen, T.W., Kaviyarasu, K. (2022). Exploring and fine tuning the properties of one dimensional Bi2S3 nanorods, Journal of Alloys and Compounds, 902, 163785. DOI: 10.1016/j.jallcom.2022.163785
  21. Sasikala, S., Balakrishnan, M., Kumar, M., Chang, J.H. (2023). Effect of solvent mixtures on the unique morphology for photocatalytic activity of Bi2S3 nanoparticles synthesized by microwave irradiation method, Inorganic Chemistry Communications, 153, 110854. DOI: 10.1016/j.inoche.2023.110854
  22. Wu, J., Yang, L., Jia, T., Liu, D. (2022). Salt-assisted synthesis of rod-like Bi2S3 single crystals for gas-phase elemental mercury removal, Energy & Fuels, 36 (5), 2591-2599. DOI: 10.1021/acs.energyfuels.1c04286
  23. Jia, T., Wang, X., Long, F., Li, J., Kang, Z., Fu, F., Sun, G., Chen, J. (2016). Facile synthesis, characterization, and visible-light photocatalytic activities of 3D hierarchical Bi2S3 architectures assembled by nanoplatelets, Crystals, 6 (11), 140. DOI: 10.3390/cryst6110140
  24. Lee, S., Kim, M.S., Lee, H., Lee, S.Y. (2022). Organic bromide-assisted one-pot synthesis of Bi2S3 nanorods using DMSO as a sulfur supply, CrystEngComm, 24 (26), 4713-4722. DOI: 10.1039/d2ce00568a
  25. Arumugam, J., Raj, A.D., Irudayaraj, A.A., Thambidurai, M. (2018). Solvothermal synthesis of Bi2S3 nanoparticles and nanorods towards solar cell application, Materials Letters, 220, 28-31. DOI: 10.1016/j.matlet.2018.02.123
  26. Jiang, Y., Zhu, Y., Xu, Z. (2006). Rapid synthesis of Bi2S3 nanocrystals with different morphologies by microwave heating, Materials Letters, 60 (17-18), 2294-2298. DOI: 10.1016/j.matlet.2005.12.127
  27. Do, T., Vu, T., Ho, G., Pham, Q., Giang, H., Le, A., Tran, D. (2021). Bi2S3 nanowires: first-principles phonon dynamics and their photocatalytic environmental remediation, The Journal of Physical Chemistry C, 125 (7), 4086-4091. DOI: 10.1021/acs.jpcc.0c10849
  28. Wang, C., Liu, N., Zhao, X., Tian, Y., Chen, X., Zhang, Y., Fan, L., Hou, B. (2023). C-doped BiOCl/Bi2S3 heterojunction for highly efficient photoelectrochemical detection and photocatalytic reduction of Cr(VI), Journal of Materials Science & Technology. DOI: 10.1016/j.jmst.2023.03.066
  29. Wang, F., Liu, Z., Dong, Y., Sun, H. (2022). Boosting visible light photocatalysis of Ag6Si2O7/dandelion shaped Bi2S3 heterojunctions, Colloids and Surfaces A: Physicochemical and Engineering, 643, 128732. DOI: 10.1016/j.colsurfa.2022.128732
  30. Lan, M., Wang, Y., Dong, X., Yang, F., Zheng, N., Wang, Y., Ma, H., Zheng, X. (2022). Controllable fabrication of sulfur-vacancy-rich Bi2S3 nanorods with efficient near-infrared light photocatalytic for nitrogen fixation, Applied Surface Science, 591, 153205. DOI: 10.1016/j.apsusc.2022.153205
  31. Shen, S., Li, X., Zhou, Y., Han, L., Xie, Y., Deng, F., Huang, J., Chen, Z., Feng, Z., Xu, J., Dong, F. (2023). Novel BiOBr/Bi2S3 high-low junction prepared by molten salt method for boosting photocatalytic degradation and H2O2 production, Journal of Materials Science & Technology, 155, 148-159. DOI: 10.1016/j.jmst.2023.03.006
  32. Zhao, G., Zheng, Y., He, Z., Lu, Z., Wang, L., Li, C., Jiao, F., Deng, C. (2018). Synthesis of Bi2S3 microsphere and its efficient photocatalytic activity under visible-light irradiation, Trans. Nonferrous Met. Soc., 28, 2002−2010. DOI: 10.1016/S1003-6326(18)64844-7
  33. Iqbal, M., Ibrar, A., Ali, A., Hussain, S., Shada, S., Ullah, S., Alshahrani, T., Hakami, J., Khan, F., Thebo, K.H. (2022). Facile Synthesis of Mn doped Bi2S3 Photocatalyst for Efficien egradation of Organic Dye under Visible-Light Irradiation, Journal of Molecular Structure, 1267, 133598. DOI: 10.1016/j.molstruc.2022.133598
  34. Liang, P., Yuan, L., Du, K., Wang, L., Li, Z., Deng, H., Wang, X., Luo, S., Shi, W. (2021). Photocatalytic reduction of Uranium(VI) under visible light with 2D/1D Ti3C2/CdS, Chemical Engineering Journal, 420, 129831. DOI: 10.1016/j.cej.2021.129831
  35. Jiang, M., Shi, Y., Huang, J., Wang, L., She, H., Tong, J., Su, B., Wang, Q. (2018). Synthesis of Flowerlike g-C3N4/BiOBr with Enhanced Visible Light Photocatalytic Activity for Dye Degradation, Eur. J. Inorg. Chem., 1834–1841. DOI: 10.1002/ejic.201800110
  36. Huang, L., Liu, J., Li, P., Li, Y., Wang, C., Shu, S., Song, Y. (2022). CQDs modulating Z-scheme g-C3N4/BiOBr heterostructure for photocatalytic removing RhB, BPA and TC and E. coli by LED light, Journal of Alloys and Compounds, 895, 162637. DOI: 10.1016/j.jallcom.2021.162637
  37. Wu, Y., Han, Q., Wang, L., Wang, X., Zhu, J. (2017). One-pot synthesis of 3D hierarchical Bi2S3/(BiO)2CO3 hollow microspheres at room temperature and their photocatalytic performance, Materials Chemistry and Physics, 187, 72-81. DOI: 10.1016/j.matchemphys.2016.11.049

Last update:

No citation recorded.

Last update:

No citation recorded.