skip to main content

SO2 Mitigation via Catalytic Oxidation using Carbonaceous Materials and Metal Oxides for Environmental Sustainability

1School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia

2College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China

Received: 4 Sep 2023; Revised: 12 Oct 2023; Accepted: 13 Oct 2023; Available online: 16 Oct 2023; Published: 11 Dec 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The high concentration of sulfur dioxide (SO2) in the air that contributes to increasing health and environmental issues has caught the attention of all countries. Numerous tactics to regulate and lower the SO2 levels in the environment that have been applied through regulations and promising technology, progress has been obtained to decrease the SO2 concentration. Among methods for SO2 removal, one of the promising techniques used is the catalytic oxidation of SO2 to SO3, which not only reduces the SO2 concentration in the environment but also produces sulfuric acid (H2SO4). Thus, the performance of the catalysts that can promote the catalytic oxidation of SO2 to SO3 for environmental sustainability is reviewed in this study. The types of catalysts evaluated in this study are carbon-based materials and metal oxides. Worth noting that these catalysts are feasible to catalytically converting SO2 hazardous material to resources, viz. SO3 and H2SO4 for industrial use. The findings of this study can serve as a foundation for devising an innovative method for SO2 mitigation through catalytic oxidation. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: SO2 mitigation; catalytic oxidation; carbonaceous materials; metal oxides; environmental sustainability
Funding: Fundamental Research Grant Scheme under contract FRGS/1/2019/TK02/XMU/03/1; Xiamen University Malaysia Research Fund under contract XMUMRF/2019-C4/IENG/0019; Xiamen University Malaysia Research Fund under contract XMUMRF/2020-C5/IENG/0029

Article Metrics:

  1. Nguyen, H.H., Gyawali, G., Martinez-Oviedo, A., Nguyen, H.P., Lee, S.W. (2020). Modified blue TiO2 nanostructures for efficient photo-oxidative removal of harmful NOx gases. Korean Journal of Chemical Engineering, 37(9), 1507–1514. DOI: 10.1007/s11814-020-0560-z
  2. Zhang, X., Wang, J., Chen, D., Liu, L. (2021). The adsorption performance of harmful gas on Cu doped WS2: A first-principle study. Materials Today Communications, 28 DOI: 10.1016/j.mtcomm.2021.102488
  3. Lv, W., Fan, X., Gan, M., Ji, Z., Chen, X., Yao, J., Jiang, T. (2018). Investigation on activated carbon removing ultrafine particles and its harmful components in complex industrial waste gas. Journal of Cleaner Production, 201, 382–390. DOI: 10.1016/j.jclepro.2018.08.064
  4. Huang, Y., Su, W., Wang, R., Zhao, T. (2019). Removal of typical industrial gaseous pollutants: From carbon, zeolite, and metal-organic frameworks to molecularly imprinted adsorbents. Aerosol and Air Quality Research, 19(9), 2130–2150. DOI: 10.4209/aaqr.2019.04.0215
  5. Khan, M.A., Ngo, H.H., Guo, W., Liu, Y., Zhang, X., Guo, J., Chang, S.W., Nguyen, D.D., Wang, J. (2018). Biohydrogen production from anaerobic digestion and its potential as renewable energy. Renewable Energy, 129, 754–768. DOI: 10.1016/j.renene.2017.04.029
  6. Kumar, G., Kim, S.H., Lay, C.H., Ponnusamy, V.K. (2020). Recent developments on alternative fuels, energy and environment for sustainability. Bioresource Technology, 317 DOI: 10.1016/j.biortech.2020.124010
  7. Tarhan, C., Çil, M.A. (2021). A study on hydrogen, the clean energy of the future: Hydrogen storage methods. Journal of Energy Storage, 40 DOI: 10.1016/j.est.2021.102676
  8. Singh, S., Ru, J. (2022). Accessibility, affordability, and efficiency of clean energy: a review and research agenda. Environmental Science and Pollution Research, 29(13), 18333–18347. DOI: 10.1007/s11356-022-18565-9
  9. Dahiya, S., Anhäuser, A., Farrow, A., Thieriot, H., Kumar, A., Myllyvirta, L. (2020). Ranking the world’s sulfur dioxide (SO2) hotspots: 2019-2020
  10. Montzka, S.A., Dlugokencky, E.J., Butler, J.H. (2011). Non-CO2 greenhouse gases and climate change. Nature, 476(7358), 43–50. DOI: 10.1038/nature10322
  11. Sudalma, S., Purwanto, P., Santoso, L.W. (2015). The Effect of SO2 and NO2 from Transportation and Stationary Emissions Sources to SO42− and NO3− in Rain Water in Semarang. Procedia Environmental Sciences, 23, 247–252. DOI: 10.1016/j.proenv.2015.01.037
  12. Qu, R., Han, G. (2021). A critical review of the variation in rainwater acidity in 24 Chinese cities during 1982-2018. Elementa, 9(1) DOI: 10.1525/elementa.2021.00142
  13. Goal 12: Responsible Consumption and Production - SDG Tracker. https://sdg-tracker.org/sustainable-consumption-production
  14. Goal 15: Life on Land - SDG Tracker. https://sdg-tracker.org/biodiversity
  15. Hagan, N. (2018). Policy assessment for the review of the primary National Ambient Air Quality Standard for sulfur oxides. In: National Service Center for Environmental Publications. URL: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=OAQPS&dirEntryID=338052. Accessed 12 Oct 2023
  16. Organization, I. M. (2020). IMO 2020 : consistent implementation of MARPOL Annex VI. In: OMi. https://www.imo.org/en/MediaCentre/HotTopics/Pages/Sulphur-2020.aspx
  17. U.S. Energy Information Administration - EIA - Independent Statistics and Analysis. https://www.eia.gov/todayinenergy/detail.php?id=37793
  18. Organization of Petroleum Exporting Countries. (2011). World oil outlook. OPEC Secretatiat
  19. Oláh, J., Aburumman, N., Popp, J., Khan, M.A., Haddad, H., Kitukutha, N. (2020). Impact of industry 4.0 on environmental sustainability. Sustainability (Switzerland), 12(11). DOI: 10.3390/su12114674
  20. Andrienko, O., Kobotaeva, N., Skorokhodova, T., Marakina, E., Sachkov, V. (2019). A removal of sulfur-containing compounds from fuel oils using a naturally occurring iron oxyhydroxide. In: AIP Conference Proceedings. American Institute of Physics Inc. DOI: 10.1063/1.5099601
  21. Wu, B., Xiong, Y., Ge, Y. (2018). Simultaneous removal of SO2 and NO from flue gas with [rad]OH from the catalytic decomposition of gas-phase H2O2 over solid-phase Fe2(SO4)3. Chemical Engineering Journal, 331, 343–354. DOI: 10.1016/j.cej.2017.08.097
  22. Wang, Z., Lun, L., Tan, Z., Zhang, Y., Li, Q. (2019). Simultaneous wet desulfurization and denitration by an oxidant absorbent of NaClO2/CaO2. Environmental Science and Pollution Research, 26(28), 29032–29040. DOI: 10.1007/s11356-019-06157-z
  23. Li, B., Li, Y., Zhang, W., Qian, Y., Wang, Z. (2020). Simultaneous NO/SO2 removal by coconut shell char/CaO from calcium looping in a fluidized bed reactor. Korean Journal of Chemical Engineering, 37(4), 688–697. DOI: 10.1007/s11814-020-0483-8
  24. Global Sulfuric Acid Market to Surpass 324.1 Million Tons by 2027 – Coherent Market Insights | Business Wire. https://www.businesswire.com/news/home/20191122005229/en/Global-Sulfuric-Acid-Market-to-Surpass-324.1-Million-Tons-by-2027-%E2%80%93-Coherent-Market-Insights
  25. Li, B., Ma, C. (2018). Study on the mechanism of SO2 removal by activated carbon. Energy Procedia, 153, 471–477. DOI: 10.1016/j.egypro.2018.10.063
  26. Esrafili, M.D., Heydari, S. (2018). Carbon-doped boron-nitride fullerenes as efficient metal-free catalysts for oxidation of SO2: a DFT study. Structural Chemistry, 29(1), 275–283. DOI: 10.1007/s11224-017-1027-7
  27. Esrafili, M.D. (2019). Oxidation of SO2 over C-doped boron nitride nanosheets: The role of C-doping, and solvent effects. Journal of Molecular Graphics and Modelling, 86, 209–218. DOI: 10.1016/j.jmgm.2018.08.015
  28. Jing, W., Guo, Q., Hou, Y., Han, X., Huang, Z. (2014). Study of SO2 oxidation over V2O5/activated carbon catalyst using in situ diffuse reflectance infrared Fourier transformation spectroscopy. Korean Journal of Chemical Engineering, 31(5), 794–800. DOI: 10.1007/s11814-013-0270-x
  29. Diez, N., Alvarez, P., Granda, M., Blanco, C., Gryglewicz, G., Wróbel-Iwaniec, I., Śliwak, A., Machnikowski, J., Menendez, R. (2014). Tailoring micro-mesoporosity in activated carbon fibers to enhance SO2 catalytic oxidation. Journal of Colloid and Interface Science, 428, 36–40. DOI: 10.1016/j.jcis.2014.04.027
  30. Mochida, I., Korai, Y., Shirahama, M., Kawano, S., Hada, T., Seo, Y., Yoshikawa, M., Yasutake, A. (2000). Removal of SOx and NOx over activated carbon fibers. Carbon, 38 DOI: 10.1016/S0008-6223(99)00179-7
  31. Chiu, C.H., Kuo, T.H., Chang, T.C., Lin, S.F., Lin, H.P., Hsi, H.C. (2017). Multipollutant removal of HgO/SO2/NO from simulated coal-combustion flue gases using metal oxide/mesoporous SiO2 composites. International Journal of Coal Geology, 170, 60–68. DOI: 10.1016/j.coal.2016.08.014
  32. Vayenas, C.G., Saltsburg, H.M. (1979). Chemistry at catalytic surfaces: The SO2 oxidation on noble metals. Journal of Catalysis, 57(2), 296–314. DOI: 10.1016/0021-9517(79)90033-2
  33. Wilburn, M.S., Epling, W.S. (2019). Formation and decomposition of sulfite and sulfate species on Pt/Pd catalysts: An SO2 oxidation and sulfur exposure study. ACS Catalysis, 9(1), 640–648. DOI: 10.1021/acscatal.8b03529
  34. Jing, W., Guo, Q., Hou, Y., Han, X., Huang, Z. (2014). Study of SO2 oxidation over V2O5/activated carbon catalyst using in situ diffuse reflectance infrared Fourier transformation spectroscopy. Korean Journal of Chemical Engineering, 31(5), 794–800. DOI: 10.1007/s11814-013-0270-x
  35. Qu, Z., Sun, F., Gao, J., Pi, X., Qie, Z., Zhao, G. (2019). A new insight into SO2 lowerature catalytic oxidation in porous carbon materials: Non-dissociated O2 molecule as oxidant. Catalysis Science and Technology, 9(16), 4327–4338. DOI: 10.1039/c9cy00960d
  36. Diez, N., Alvarez, P., Granda, M., Blanco, C., Gryglewicz, G., Wróbel-Iwaniec, I., Śliwak, A., Machnikowski, J., Menendez, R. (2014). Tailoring micro-mesoporosity in activated carbon fibers to enhance SO2 catalytic oxidation. Journal of Colloid and Interface Science, 428, 36–40. DOI: 10.1016/j.jcis.2014.04.027
  37. Jing, W., Guo, Q., Hou, Y., Ma, G., Han, X., Huang, Z. (2014). Catalytic role of vanadium(V) sulfate on activated carbon for SO 2 oxidation and NH3-SCR of NO at low temperatures. Catalysis Communications, 56, 23–26. DOI: 10.1016/j.catcom.2014.06.017
  38. Guo, Q., Jing, W., Hou, Y., Li, Y., Li, F., Huang, Z. (2020). The role of vanadium species during SO2 removal over a V2O5/AC catalyst. Catalysis Science and Technology, 10(1), 231–239. DOI: 10.1039/c9cy01975h
  39. Chen, Y., Yin, S., Chen, Y., Cen, W., Li, J., Yin, H. (2018). Promoting mechanism of N-doped single-walled carbon nanotubes for O2 dissociation and SO2 oxidation. Applied Surface Science, 434, 382–388. DOI: 10.1016/j.apsusc.2017.10.137
  40. Xiong, J., Li, Y., Lin, Y., Zhu, T. (2019). Formation of sulfur trioxide during the SCR of NO with NH3 over a V2O5/TiO2 catalyst. RSC Advances, 9(67), 38952–38961. DOI: 10.1039/c9ra08191g
  41. Chen, Y., Yin, S., Li, Y., Cen, W., Li, J., Yin, H. (2017). Curvature dependence of single-walled carbon nanotubes for SO2 adsorption and oxidation. Applied Surface Science, 404, 364–369. DOI: 10.1016/j.apsusc.2017.01.225
  42. Yang, S., Xu, D., Yan, W., Xiong, Y. (2021). Effective NO and SO2 removal from fuel gas with H2O2 catalyzed by Fe3O4/FeO/Fe3C encapsulated in multi-walled carbon nanotubes. Journal of Environmental Chemical Engineering, 9(4). DOI: 10.1016/j.jece.2021.105413
  43. Cen, W., Hou, M., Liu, J., Yuan, S., Liu, Y., Chu, Y. (2015). Oxidation of SO2 and NO by epoxy groups on graphene oxides: The role of the hydroxyl group. RSC Advances, 5(29), 22802–22810. DOI: 10.1039/c4ra15179h
  44. Zhang, H., Cen, W., Liu, J., Guo, J., Yin, H., Ning, P. (2015). Adsorption and oxidation of SO2 by graphene oxides: A van der Waals density functional theory study. Applied Surface Science, 324, 61–67. DOI: 10.1016/j.apsusc.2014.10.087
  45. He, G., He, H., He, H., He, H. (2020). Water Promotes the Oxidation of SO2 by O2 over Carbonaceous Aerosols. Environmental Science and Technology, 54(12), 7070–7077. DOI: 10.1021/acs.est.0c00021
  46. Zou, L., Yan, P., Lu, P., Chen, D., Chu, W., Cen, W. (2020). Enhanced heterogenous hydration of SO2 through immobilization of pyridinic-N on carbon materials: Hydration of SO2 on PyN doped Carbon. Royal Society Open Science, 7(8) DOI: 10.1098/rsos.192248
  47. Esrafili, M.D. (2019). Oxidation of SO2 over C-doped boron nitride nanosheets: The role of C-doping, and solvent effects. Journal of Molecular Graphics and Modelling, 86, 209–218. DOI: 10.1016/j.jmgm.2018.08.015
  48. Esrafili, M.D., Heydari, S. (2018). Carbon-doped boron-nitride fullerenes as efficient metal-free catalysts for oxidation of SO2: a DFT study. Structural Chemistry, 29(1), 275–283. DOI: 10.1007/s11224-017-1027-7
  49. Li, B., Ma, C. (2018). Study on the mechanism of SO2 removal by activated carbon. In: Energy Procedia. Elsevier Ltd, pp. 471–477. DOI: 10.1016/j.egypro.2018.10.063
  50. Du, X., Xue, J., Wang, X., Chen, Y., Ran, J., Zhang, L. (2018). Oxidation of Sulfur Dioxide over V2O5/TiO2 Catalyst with Low Vanadium Loading: A Theoretical Study. Journal of Physical Chemistry C, 122(8), 4517–4523. DOI: 10.1021/acs.jpcc.8b00296
  51. Dunn, J.P., Stenger, H.G.B., Wachs, I.E. (1999). Oxidation of sulfur dioxide over supported vanadia catalysts: molecular structure ± reactivity relationships and reaction kinetics. Catalysis Today, 51(2), 301–308. DOI: 10.1016/S0920-5861(99)00052-8
  52. Lai, J.K., Wachs, I.E. (2018). A Perspective on the Selective Catalytic Reduction (SCR) of NO with NH3 by Supported V2O5-WO3/TiO2 Catalysts. ACS Catalysis, 8(7), 6537–6551. DOI: 10.1021/acscatal.8b01357
  53. Kamata, H., Ohara, H., Takahashi, K., Yukimura, A., Seo, Y. (2001). SO2 oxidation over the V2O5/TiO2 SCR catalyst. Catalysis Letters, 73(1). DOI: 10.1023/A:1009065030750
  54. Xiong, J., Li, Y., Lin, Y., Zhu, T. (2019). Formation of sulfur trioxide during the SCR of NO with NH3 over a V2O5/TiO2 catalyst. RSC Advances, 9(67), 38952–38961. DOI: 10.1039/c9ra08191g
  55. N.-Y., T. (1995). Vanadia/Titania catalysts for selective catalytic reduction (SCR) of nitric oxide by ammonia. Journal of Catalysis, 226–240. DOI: 10.1006/jcat.1995.1024
  56. Lai, J.K., Wachs, I.E. (2018). A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5-WO3/TiO2 catalysts. ACS Catalysis, 8(7), 6537–6551. DOI: 10.1021/acscatal.8b01357
  57. He, Y., Ford, M.E., Zhu, M., Liu, Q., Wu, Z., Wachs, I.E. (2016). Selective catalytic reduction of NO by NH3 with WO3-TiO2 catalysts: Influence of catalyst synthesis method. Applied Catalysis B: Environmental, 188, 123–133. DOI: 10.1016/j.apcatb.2016.01.072
  58. Qing, M., Su, S., Wang, L., Liu, L., Xu, K., He, L., Jun, X., Hu, S., Wang, Y., Xiang, J. (2019). Getting insight into the oxidation of SO2 to SO3 over V2O5-WO3/TiO2 catalysts: Reaction mechanism and effects of NO and NH3. Chemical Engineering Journal, 361, 1215–1224. DOI: 10.1016/j.cej.2018.12.165
  59. Svachula, J., Ferlazzo, N., Tronconi, E., Bregani, F. (1993). Selective reduction of NOx by NH3 over honeycomb DeNOxing catalysts. Industrial and Engineering Chemistry Research, 32, 1053–1060. DOI: 10.1021/ie00018a010
  60. Shi, Y., Fan, M. (2007). Reaction kinetics for the catalytic oxidation of sulfur dioxide with microscale and nanoscale iron oxides. Industrial and Engineering Chemistry Research, 46(1), 80–86. DOI: 10.1021/ie060889d
  61. Koutsopoulos, S., Eriksen, K.M., Fehrmann, R. (2006). Synthesis and characterization of supported Pt and Pt alloys nanoparticles used for the catalytic oxidation of sulfur dioxide. Journal of Catalysis, 238(2), 270–276. DOI: 10.1016/j.jcat.2005.12.009
  62. Yan, Z., Kang, Y., Li, D., Liu, Y.C. (2020). Catalytic oxidation of sulfur dioxide over α-Fe2O3/SiO2 catalyst promoted with Co and Ce oxides. Korean Journal of Chemical Engineering, 37(4), 623–632. DOI: 10.1007/s11814-020-0477-6
  63. Liu, H., Zhang, Q., Yang, H., Wu, Y., Chen, J., Hu, S. (2021). Effect of metal oxides and smelting dust on SO2 conversion to SO3. Atmosphere, 12(6) DOI: 10.3390/atmos12060734
  64. Hammerle, R.H., Truex, T.J. (1976). The Kinetics of SO2 Oxidation for Various Catalyst Compositions
  65. Shi, Y., Fan, M. (2007). Reaction kinetics for the catalytic oxidation of sulfur dioxide with microscale and nanoscale iron oxides. Industrial and Engineering Chemistry Research, 46(1), 80–86. DOI: 10.1021/ie060889d
  66. Hamzehlouyan, T., Sampara, C., Li, J., Kumar, A., Epling, W. (2014). Experimental and kinetic study of SO2 oxidation on a Pt/γ-Al2O3 catalyst. Applied Catalysis B: Environmental, 152–153, 108–116. DOI: 10.1016/j.apcatb.2014.01.005
  67. Qu, Z., Sun, F., Gao, J., Pi, X., Qie, Z., Zhao, G. (2019). A new insight into SO2 low temperature catalytic oxidation in porous carbon materials: Non-dissociated O2 molecule as oxidant. Catalysis Science and Technology, 9(16), 4327–4338. DOI: 10.1039/c9cy00960d
  68. Fixed Bed Reactor - ChemEnggHelp. https://www.chemengghelp.com/fixed-bed-reactor/#Operation_Controls_of_Fixed_Bed_Reactor
  69. Flegkas, S., Birkelbach, F., Winter, F., Groenewold, H., Werner, A. (2019). Profitability analysis and capital cost estimation of a thermochemical energy storage system utilizing fluidized bed reactors and the reaction system MgO/Mg(OH)2. Energies, 12(24) DOI: 10.3390/en12244788
  70. Lappas, A., Heracleous, E. (2016). Production of biofuels via Fischer-Tropsch synthesis: Biomass-to-liquids. In: Handbook of Biofuels Production: Processes and Technologies: Second Edition. Elsevier Inc., pp. 549–593.DOI: 10.1016/B978-0-08-100455-5.00018-7
  71. Thomson, C.G., Lee, A.L., Vilela, F. (2020). Heterogeneous photocatalysis in flow chemical reactors. Beilstein Journal of Organic Chemistry, 16, 1495–1549. DOI: 10.3762/bjoc.16.125
  72. Ellis, N., Mahecha-Botero, A. (2020). Scale-Up of Fluidized Beds. In: Grace, J., Bi, X., Ellis, N. (eds) Essentials of Fluidization Technology. DOI: 10.1002/9783527699483.ch17
  73. Sahoo, A. Studies on fluidized bed technology for treatment of gaseous pollutants: sulphur dioxide. https://www.bing.com/search?q=Studies+on+fluidized+bed+technology+for+treatment+of+gaseous+pollutants%3A+sulphur+dioxide&qs=n&form=QBRE&sp=-1&lq=1&pq=studies+on+fluidized+bed+technology+for+treatment+of+gaseous+pollutants%3A+sulphur+dioxide&sc=1-88&sk=&cvid=AA4FD4756C1343859A31038EC2DDC259&ghsh=0&ghacc=0&ghpl=. Accessed 12 Oct 2023

Last update:

No citation recorded.

Last update:

No citation recorded.