skip to main content

Improving Energy Efficiency with Energy Recovery for Propylene Production

Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, 50275, Indonesia

Received: 19 Dec 2024; Revised: 21 Dec 2024; Accepted: 27 Dec 2024; Available online: 29 Dec 2024; Published: 30 Dec 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Propylene production through the metathesis of 2-butene is a well-established method. However, energy efficiency in this process remains an area of improvement. This study focuses on optimizing energy consumption by integrating heat recovery and reducing the reliance on external energy sources. Simulations were conducted using Aspen HYSYS V11 to compare the basic and modified processes. Modifications included utilizing heat from condensers and coolers to power compressors and heaters, eliminating redundant heating units. Thermodynamic analyses confirmed the endothermic nature of the reactions. Results indicated a significant reduction in total heat flow, from 2.983×108 kJ/h to 1.564×108 kJ/h, leading to improved specific energy consumption. With a production capacity of 15,400 tons/year, the optimized process demonstrated enhanced energy efficiency and sustainability. This study highlights the potential of process modifications to achieve energy savings, lower production costs, and minimize environmental impact in the chemical industry. Copyright © 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Propylene production; 2-butene metathesis; energy efficiency; heat recovery; Aspen HYSYS; process optimization; specific energy consumption; sustainable chemical processes

Article Metrics:

  1. Alhajri, I.H., Gadalla, M.A., & Elazab, H.A. (2021). A conceptual efficient design of energy recovery systems using a new energy-area key parameter. Energy Reports, 7, 1079–1090. DOI: 10.1016/j.egyr.2020.12.023
  2. Alshbuki, E.H., Bey, M.M., & Mohamed, A. Ala. (2020). Simulation Production of Dimethylether (DME) from Dehydration of Methanol Using Aspen Hysys. Scholars International Journal of Chemistry and Material Sciences, 03(02), 13–18. DOI: 10.36348/sijcms.2020.v03i02.002
  3. Andrei, A.M., & Bildea, C.S. (2023). Optimization and Control of Propylene Production by Metathesis of 2-Butene. Processes, 11(5). DOI: 10.3390/pr11051325
  4. Brooks, K.P., Bowden, M.E., Karkamkar, A.J., Houghton, A.Y., & Autrey, S.T. (2016). Coupling of exothermic and endothermic hydrogen storage materials. Journal of Power Sources, 324, 170–178. DOI: 10.1016/j.jpowsour.2016.05.067
  5. Chen, W., Huang, Z., & Chua, K.J. (2022). Sustainable energy recovery from thermal processes: a review. In Energy, Sustainability and Society (Vol. 12, Issue 1). BioMed Central Ltd. DOI: 10.1186/s13705-022-00372-2
  6. Gorban, A.N., & Yablonsky, G.S. (2011). Extended detailed balance for systems with irreversible reactions. Chemical Engineering Science, 66(21), 5388–5399. DOI: 10.1016/j.ces.2011.07.054
  7. Hedayati Moghaddam, A., Esfandyari, M., & Sakhaeinia, H. (2024). Investigation the effects of operational parameters and multi-factor optimization of butene metathesis process via statistical approach. Results in Engineering, 23. DOI: 10.1016/j.rineng.2024.102476
  8. Jiang, W., Huang, R., Li, P., Feng, S., Zhou, G., Yu, C., Zhou, H., Xu, C., & Xu, Q. (2016). Metathesis and isomerization of n-butene and ethylene over WO3/SiO2 and MgO catalysts: Thermodynamic and experimental analysis. Applied Catalysis A: General, 517, 227–235. DOI: 10.1016/j.apcata.2016.03.009
  9. Kim, J.K., Son, H., & Yun, S. (2022). Heat integration of power-to-heat technologies: Case studies on heat recovery systems subject to electrified heating. Journal of Cleaner Production, 331. DOI: 10.1016/j.jclepro.2021.130002
  10. Lima, E.C., Gomes, A.A., & Tran, H.N. (2020). Comparison of the nonlinear and linear forms of the van’t Hoff equation for calculation of adsorption thermodynamic parameters (∆S° and ∆H°). Journal of Molecular Liquids, 311. DOI: 10.1016/j.molliq.2020.113315
  11. Lin, X., Li, Z., Han, Y., Chen, Z., & Geng, Z. (2024). Novel spatiotemporal graph attention model for production prediction and energy structure optimization of propylene production processes. Computers and Chemical Engineering, 181. DOI: 10.1016/j.compchemeng.2023.108507
  12. Luttrell, W.E., & Giles, N.P. (2016). Propylene. In Journal of Chemical Health and Safety, 23, 2, 34–36. DOI: 10.1016/j.jchas.2016.02.005
  13. Nabavi-Pelesaraei, A., Rafiee, S., Mohtasebi, S. S., Hosseinzadeh-Bandbafha, H., & Chau, K. wing. (2019). Assessment of optimized pattern in milling factories of rice production based on energy, environmental and economic objectives. Energy, 169, 1259–1273. DOI: 10.1016/j.energy.2018.12.106
  14. Oliveira, M.C., Iten, M., Cruz, P.L., & Monteiro, H. (2020). Review on energy efficiency progresses, technologies and strategies in the ceramic sector focusing on waste heat recovery. Energies, 13, 22. DOI: 10.3390/en13226096
  15. Parmar, K.K., Parmar, K.K., Padmavathi, G., & Dash, S.K. (2020). Energy reduction and improved product recovery with enhanced safety of industrial scale propane-propylene separation process. International Journal of Energy Research, 44(15), 12630–12638. DOI: 10.1002/er.5511
  16. Pranolo, S. H., Muzayanha, S. U., Yudha, C. S., Hasanah, L. M., & Shohih, E. N. (2018). Kajian Konsumsi Energi Spesifik Sektor Industri Kimia Di Indonesia Sebagai Acuan Efisiensi Energi. Master Chemical Enginering Thesis, Universitas Sebelas Maret
  17. Salom-Català, A., Strugovshchikov, E., Kaźmierczak, K., Curulla-Ferré, D., Ricart, J.M., & Carbó, J.J. (2024). Reactive Force Field Development for Propane Dehydrogenation on Platinum Surfaces. Journal of Physical Chemistry C, 128(7), 2844–2855. DOI: 10.1021/acs.jpcc.3c07126
  18. Szerencsés, D., Sepsey, A., & Felinger, A. (2023). Correctness of the van ’t Hoff analysis for homogeneous or heterogeneous retention. Journal of Chromatography A, 1709. DOI: 10.1016/j.chroma.2023.464380
  19. Xia, L., Liu, R., Zeng, Y., Zhou, P., Liu, J., Cao, X., & Xiang, S. (2019). A review of low-temperature heat recovery technologies for industry processes. Chinese Journal of Chemical Engineering, 27, 10, 2227–2237. DOI: 10.1016/j.cjche.2018.11.012
  20. Yaws, C.L. (2003). Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds Physical, Thermodynamic and Transport Properties for 5,000 Organic Chemical Compounds. Knovel

Last update:

No citation recorded.

Last update:

No citation recorded.