

Available online at website: https://journal.bcrec.id/index.php/jcerp

Journal of Chemical Engineering Research Progress, 1 (2) 2024, 264-272

Research Article

Improving Energy Efficiency with Energy Recovery for Propylene Production

Andi Nadhif Athallah Hurairah, Danu Pasa Arkajaya, Tenisyah Ramadhani*, Virgi Achmad Fahrezi

Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro Jl. Prof. Soedarto SH, Tembalang Campus, 50275, Semarang, Central Java, Indonesia.

Received: 19th December 2024; Revised: 21th December 2024; Accepted: 27th December 2024 Available online: 30th December 2024; Published regularly: December 2024

SUPPORTING INFORMATION (SI), DOI: https://doi.org/10.9767/jcerp.20300

Journal of Chemical Engineering Research Progress, 1 (2), 2024, 272

Table S1. Mass and Energy Balance of the modified process

HEAT AND MATERIAL BALANCE												
Stream Number	Unit	Feed	1	Vapl	Fl	F3	F4	F2	F3	F6	F7	Vap2
Total Phase Properties												
Vapour Fraction		0	0	1	1	1	1	1	1	1	0	1
Temperature	C	40.00	57.05	57.05	200.00	511.70	300.80	735.90	511.70	558.60	50.00	50.00
Pressure	bar	7.00	6.50	6.50	1.10	0.90	0.85	1.00	0.90	31.00	31.00	31.00
Molar Flow	kgmole/h	60	2955	0	2966	2970	2970	2955	2970	2970	2970	0
Mass Flow	kg/h	3.403E+03	1.698E+05	0.000E+00	1.698E+05	1.698E+05	1.698.E+05	1.698E+05	1.698E+05	1.698E+05	1.698E+05	0.000E+00
Liquid Volume Flow	m3/h	5.559	289.5	0	289.5	290.4	290.4	289.5	104.7473111	290.4	290.4	0
Heat Flow	kJ/h	-3.782E+06	-3.452E+08	0.000E+00	-2.354E+08	-7.992E+07	-1.897.E+08	5.575E+07	-7.992E+07	-5.529E+07	-3.465E+08	0.000E+00
Stream Number	Unit	Feed	1	Vapl	Fl	F3	F4	F2	F3	F6	F7	Vap2
Composition												
Comp Mole Frac (n-Butane)	mole %	0.3	0.7902	0.737	0.7902	0.7862	0.7862	0.7902	0.7862	0.7862	0.7862	0.7861
Comp Mole Frac (1-Butene)	mole %	0	0.1001	0.1096	0.1001	0.1006	0.1006	0.1001	0.1006	0.1006	0.1006	0.1007
Comp Mole Frac (2-Butene)	mole %	0.7	0.0738	0.0637	0.0738	0.0602	0.0602	0.0738	0.0602	0.0602	0.0602	0.0602
Comp Mole Frac (Propene)	mole %	0	0.0247	0.0715	0.0247	0.0355	0.0355	0.0247	0.0355	0.0355	0.0355	0.0355
Comp Mole Frac (2-Pentene)	mole %	0	0.01	0.0036	0.01	0.0107	0.0107	0.01	0.0107	0.0107	0.0107	0.0107
Comp Mole Frac (Ethylene)	mole %	0	0.0012	0.0147	0.0012	0.0065	0.0065	0.0012	0.0065	0.0065	0.0065	0.0066
Comp Mole Frac (3-Hexene)	mole %	0	0	0	0	0.0003	0.0003	0	0.0003	0.0003	0.0003	0.0003
Total	mole %	1	1	1	1	1	1	1	1	1	1	1
Stream Number	Unit	F8	S13	Ethylene	F9	D1	F10	F11	Recycle	2-PENTHENE	3-HEXANE	F5
Total Phase Properties	Unit	rð	813	Etnylene	19	Propylene	F10	FII	кесусіе	2-PENTHENE	3-HEXAINE	rə
Vapour Fraction		0	0	0	0	0	0	0	Π	0	0	0
	C	50.00	57.37	-11.45	139.10	35.00	125.00	120.50	57.34	66,35	112.20	580.20
Temperature	har	31.00	57.37 6.50	-11.45 31.00	33.00	35.00 25.50	25.50	7.50	57.34 6.50	2.50	3.50	391.60
Pressure Molar Flow	kemole/h	2970	2895	5.162	2965	45.27	2950	2.993	2917	2.092	0.9005	2970
Mass Flow		1.698E+05	2895 1.664.E+05	5. l62 145.6	2965 1,696E+05	45.27 1781	2950 1.679E+05	222.5	2917 1.673E+05	2.092	75.66	2970 1.698E+05
Liquid Volume Flow	kg/h m3/h	1.698E+05 290.4	1.664.E.+U5 283.9	0.3783	290	3,602	286.4	0.3334	286.1	0.2226	0.1108	1.638E+05 290.4
Heat Flow	ms/n kJ/h	-3.465E+08	-3.414E+08	0.3783 2.105E+05	-2.969E+08	3.602 5.447E+05	-3.085E+08	-1.340E+05	-3.440E+08	-1.017E+05	-5.385E+04	-5.529E+07
Stream Number	Unit		-3.414E+08 S13	Ethylene				-1.340E+05 F11		2-PENTHENE	-5.385E + 04 3-HEXANE	
Composition	Unit	F8	813	Etnylene	F9	Propylene	F10	FII	Recycle	Z-PENTHENE	3-HEXAINE	F5
Comp Mole Frac (n-Butane)	mole %	0.7862	0.8003	0.0006	0.7875	0.0174	0.7995	0	0.8003	0	0	0.7562
	mole %	0.7862	0.8003		0.7875	0.0174	0.7995	0	0.8003	0	0	0.7562
Comp Mole Frac (1-Butene)		0.006	0.1021	0	0.008	0.0163	0.1021	·	0.1022	_	0	
Comp Mole Frac (2-Butene)	mole %			-	0.0603		0.0612	0		0	0	0.0602
Comp Mole Frac (Propene)	mole %	0.0355 0.0107	0.0253 0.0102	0.0093	0.0356	0.7335		0 0.7004	0.0248 0.0102	0.9976	0.01	0.0355
Comp Mole Frac (2-Pentene)	mole %			0	0.0107	0 2222	0.0109				U.U1	0.0107 0.0065
Comp Mole Frac (Ethylene)	mole %	0.0065	0.0012	0.99		0.2322	0.0013	0	0.0013	0		
Comp Mole Frac (3-Hexene)	mole %	0.0003		0.0001	0.0003	0.0001	0.0003	0.2996	0	0.0024	0.99	0.0
Total	mole %	1			1 1		1					