skip to main content

Energy Optimization of Dimethyl Ether (DME) Production Process from Methanol Dehydration

1Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, 50275, Indonesia

2Department of Chemical Engineering, Sebelas Maret University, Surakarta, Indonesia

Received: 17 Dec 2024; Revised: 19 Dec 2024; Accepted: 19 Dec 2024; Available online: 26 Dec 2024; Published: 30 Dec 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The increasing demand for sustainable and clean alternative fuels has driven the focus on dimethyl ether (DME), an environmentally friendly and non-toxic chemical with high potential as a fuel and industrial solvent. DME can be produced from various raw materials such as natural gas, methanol, biomass, and coal. This study investigates the optimization of DME production from methanol dehydration using a fixed-bed plug flow reactor and γ-Al₂O₃ catalyst, emphasizing energy efficiency improvements. Modifications were implemented in the Aspen HYSYS simulation by replacing the conventional heater with heat exchanger and utilizing heat generated during cooling process for another heating process. The results demonstrated a significant reduction 65.8 % in net energy consumption from 8.54×106 kJ/h to 2.92×106 kJ/h, validating the effectiveness of these modifications by leveraging Aspen HYSYS simulations, the proposed design achieved high process efficiency while maintaining the target DME purity of 99.95 % produced. This research highlights the potential of heat integration strategies to enhance the economic and environmental performance of DME production processes. Copyright © 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Optimization; dimethyl ether; DME; methanol dehydration; simulation

Article Metrics:

  1. Scognamiglio, S., Ciccone, B., Ruoppolo, G., & Landi, G. (2024). Design and Simulation of Methanol and Dimethyl Ether (DME) Production from Biomass-derived Syngas. Chemical Engineering Transactions, 109, 277-282. DOI: 10.3303/CET24109047
  2. Rosadi, I., Athikaphan, P., Chantanachat, P., Neramittagapong, A., & Neramittagapong, S. (2020). The catalytic activity of Co/kaolinite catalyst for dimethyl ether synthesis via methanol dehydration. Energy Reports, 6, 469-473. DOI: 10.1016/j.egyr.2020.11.212
  3. Chmielarz, L. (2024). Dehydration of Methanol to Dimethyl Ether—Current State and Perspectives. Catalysts, 14(5), 308. DOI: 10.3390/catal14050308
  4. Tavan, Y., & Hasanvandian, R. (2015). Two practical equations for methanol dehydration reaction over HZSM-5 catalyst–Part I: Second order rate equation. Fuel, 142, 208-214. DOI: 10.1016/j.fuel.2014.10.078
  5. Ohnishi, K., Tope, H., Zhang, J. (2022). Montreal Protocol on Substances that Deplete the Ozone Layer: Assessment Report of the Medical and Chemical Technical Options Committee, United Nations Environment Programme, ISBN: 978-9966-076-99-1
  6. Ghassan, J. (2020). Dehydration of Methanol in catalytic fixed bed reactor. Catalyst, 10, 10-3. DOI: 10.1088/1757-899X/1076/1/012024
  7. Peinado, C., Liuzzi, D., Sluijter, S.N., Skorikova, G., Boon, J., Guffanti, S., Groppi, G., Rojas, S. (2024). Review and perspective: Next generation DME synthesis technologies for the energy transition. Chemical Engineering Journal, 479, 147494. DOI: 10.1016/j.cej.2023.147494
  8. Kokel, A., Schäfer, C., & Török, B. (2019). Organic synthesis using environmentally benign acid catalysis. Current Organic Synthesis, 16(4), 615-649
  9. Hamed Bateni, Chad Able Development of Heterogeneous Catalysts for Dehydration of Methanol to Dimethyl Ether: A Review. Catal. Ind. 11, 7–33 (2019). DOI: 10.1134/S2070050419010045
  10. Ravenelle, R.M., Copeland, J.R., Kim, W.G., Crittenden, J.C., & Sievers, C. (2011). Structural changes of γ-Al2O3-supported catalysts in hot liquid water. ACS Catalysis, 1(5), 552-561. DOI: 10.1021/cs1001515
  11. Barbarossa, V., Viscardi, R., Maestri, G., Maggi, R., Gattia, D.M., & Paris, E. (2019). Sulfonated catalysts for methanol dehydration to dimethyl ether (DME). Materials Research Bulletin, 113, 64-69. DOI: 10.1016/j.materresbull.2019.01.018
  12. Rahman, T.Y.P., & Azzahra, M.F. (2024). Pre-Design of a Dimethyl Ether (DME) Plant using Methanol with Capacity of 44,000 Ton/Year. Thesis. Department of Industry Engineering, Universitas Islam Indonesia
  13. Santoso, M.Y., Asyraf, N., Gunawan, M.L., & Rizkiana, J. (2023). Methanol dehydration into dimethyl ether (DME) simulation in fixed bed reactor. In AIP Conference Proceedings (Vol. 2667, No. 1). AIP Publishing. DOI: 10.1063/5.0116541
  14. Kansha, Y., Ishizuka, M., Song, C., & Tsutsumi, A. (2015). Process intensification for dimethyl ether production by self-heat recuperation. Energy, 90, 122-127. DOI: 10.1016/j.energy.2015.05.037
  15. Palomo, J., Rodríguez-Cano, M.A., Berruezo-García, J., Rodríguez-Mirasol, J., & Cordero, T. (2022). Efficient methanol dehydration to DME and light hydrocarbons by submicrometric ZrO2-ZSM-5 fibrillar catalysts with a shell-like structure. Fuel, 315, 123283. DOI: 10.1016/j.fuel.2022.123283
  16. Moghaddam, A.L., & Hazlett, M.J. (2023). Methanol dehydration catalysts in direct and indirect dimethyl ether (DME) production and the beneficial role of DME in energy supply and environmental pollution. Journal of Environmental Chemical Engineering, 11, 110307. DOI: 10.1016/j.jece.2023.110307
  17. Bakhtyari, A., & Rahimpour, M.R. (2018). Methanol to dimethyl ether. In Methanol (pp. 281-311). Elsevier. DOI: 10.1016/B978-0-444-63903-5.00010-8
  18. Dadgar, F., Myrstad, R., Pfeifer, P., Holmen, A., & Venvik, H.J. (2016). Direct dimethyl ether synthesis from synthesis gas: The influence of methanol dehydration on methanol synthesis reaction. Catalysis Today, 270, 76-84. DOI: 10.1016/j.cattod.2015.09.024
  19. Mathwig, T. (2021). Design, Analysis, and Optimization of a Process to Produce Dimethyl Ether from Methanol. PhD Thesis. University of Mississippi
  20. Azizi, Z., Rezaeimanesh, M., Tohidian, T., & Rahimpour, M. R. (2014). Dimethyl ether: A review of technologies and production challenges. Chemical Engineering and Processing: Process Intensification, 82, 150-172. DOI: 10.1016/j.cep.2014.06.007
  21. Yaws, C.L. (2015). Yaws' handbook of thermodynamic and physical properties of chemical compounds (2nd ed.). Gulf Professional Publishing. ISBN: 978-0128029992
  22. Yulianto, E.S., Haadin, M.A.F. (2022). Analysis of Mass Flow Rate in Cold Water into Flow with Hot Water Output Temperature in Shell and Tube Heat Exchanger. International Journal Science and Technology, 1(2), 8-18. DOI: 10.56127/ijst.v1i2.135
  23. Kono, T., Kawahara, C., Kimura, N., Tsuge, Y. (2018). Application of strategy switching mechanism with improved strategy for heat exchanger network design. Computer Aided Chemical Engineering, 44, 949-954. DOI: 10.1016/B978-0-444-64241-7.50153-1
  24. Smith, J. M. (1950). Introduction to Chemical Engineering Thermodynamics. McGraw Hill
  25. Zhao, H., & Lvov, S. N. (2016). Phase behavior of the CO2–H2O system at temperatures of 273–623 K and pressures of 0.1–200 MPa using Peng-Robinson-Stryjek-Vera equation of state with a modified Wong-Sandler mixing rule: an extension to the CO2–CH4–H2O system. Fluid Phase Equilibria, 417, 96-108. DOI: 10.1016/j.fluid.2016.02.027
  26. Mollavali, M., Yaripour, F., Atashi, H., & Sahebdelfar, S. (2008). Intrinsic kinetics study of dimethyl ether synthesis from methanol on γ-Al2O3 catalysts. Industrial & Engineering Chemistry Research, 47(9), 3265-3273. DOI: 10.1021/ie800051h
  27. Chowdhury, J.I., Hu, Y., Haltas, I., Balta-Ozkan, N., & Varga, L. (2018). Reducing industrial energy demand in the UK: A review of energy efficiency technologies and energy saving potential in selected sectors. Renewable and Sustainable Energy Reviews, 94, 1153-1178. DOI: 10.1016/j.rser.2018.06.040

Last update:

No citation recorded.

Last update:

No citation recorded.