skip to main content

Optimizing Maleic Anhydride Production from Benzene's Cost by Preheating Inlet Air in Fired Heater and Modifying Distillation Column Operating Condition

Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, 50275, Indonesia

Received: 19 Dec 2024; Revised: 20 Dec 2024; Accepted: 26 Dec 2024; Available online: 29 Dec 2024; Published: 30 Dec 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The need for materials with superior properties from two different ingredients has recently attracted industries. Maleic anhydride or C4H2O3 is an intermediate product often used to mix materials with distinct characteristics. One way to produce maleic anhydride is by reacting benzene and air. Unfortunately, the production of maleic anhydride is classified as energy-consuming due to the plant equipment used such as fired heaters and distillation columns for the production. In this process modification, optimization is carried out on the fired heater by using the residual heat from combustion as an energy source for the preheating of incoming air. In addition, optimization was also carried out on the distillation column by changing the operating variables, especially the reflux ratio and column temperature.  Simulations were carried out using Aspen HYSYS V11 and comparisons were made between the energy required and the profit obtained from the original process to the modified process. The simulation results showed a reduction in energy cost by 0.771% on the fired heater and an increase in profit by 47.47% on the distillation column. Therefore, this modification reduces the energy cost while maximizing the profit made from maleic anhydride production using benzene and air. Copyright © 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Maleic anhydride; Process modification; Heat efficiency; Profit maximation

Article Metrics:

  1. Tessanan, W., Phinyocheep, P., Amornsakchai, T. (2024). Sustainable Materials with Improved Biodegradability and Toughness from Blends of Poly(Lactic Acid), Pineapple Stem Starch and Modified Natural Rubber. Polymers, 16(2). DOI: 10.3390/polym16020232
  2. Sianturi, K., Nugraha, A., Kristaura, B., Chalid, M. (2023). Enhancing Compatibility and Mechanical Properties of Natural Rubber Composites. Journal of Materials Exploration and Findings, 2(1), 17–23. DOI: 10.7454/jmef.v2i1.1029
  3. Vachlepi, A., Purbaya, M. (2019). Pengaruh Penambahan Anhidrida Maleat Terhadap Mutu Teknis Karet Alam Termodifikasi. Jurnal Penelitian Karet, 75–86. DOI: 10.22302/ppk.jpk.v37i1.618
  4. Yu, T.Y., Kuo, C.T., Lai, C.K., Won, W., Yu, B.Y. (2024). Unraveling the alternative process configurations for more environmentally friendly Maleic Anhydride production. Process Safety and Environmental Protection, 191, 2385–2401. DOI: 10.1016/j.psep.2024.09.116
  5. Cucciniello, R., Cespi, D., Riccardi, M., Neri, E., Passarini, F., Pulselli, F.M. (2023). Maleic anhydride from bio-based 1-butanol and furfural: a life cycle assessment at the pilot scale. Green Chemistry, 25(15), 5922–5935. DOI: 10.1039/d2gc03707f
  6. Novembi, S. (2019). Pra Rencana Pabrik Pembuatan Maleat Anhidrat Melalui Proses Parsial Oksidasi Butana Kapasitas 70.000 Ton/Tahun. Master Thesis. Department of Chemical Engineering, Universitas Sriwijaya
  7. Hood, D.K., Musa, O.M. (2016). Progress in maleic anhydride production. In: Handbook of Maleic Anhydride Based Materials: Syntheses, Properties and Applications. Springer International Publishing, pp. 3–55. DOI: 10.1007/978-3-319-29454-4_1
  8. Carneiro de Oliveira, J., de Meireles Brioude, M., Airoudj, A., Bally-Le Gall, F., Roucoules, V. (2022). Plasma polymerization in the design of new materials: looking through the lens of maleic anhydride plasma polymers. Mater. Today Chem. 23. DOI: 10.1016/j.mtchem.2021.100646
  9. Uraz, C., Atalay, Süheyda. (2012). V2O5-MoO3 Catalysts Preparation and Performance Testing on the Oxidation of Benzene to Maleic Anhydride in a Fixed Bed Reactor. Iranian Journal Chemical Engineering, 31(2), 9-13
  10. Humaira, T., Kurniawan, B., Hasanah, S., Christina, E., Hawckins At-Tsaqib, J., Kunci, K. (2022). Modifikasi Struktur Polistirena Menggunakan Maleat Anhidrida sebagai Pengikat Silang dan Benzoil Peroksida sebagai Inisiator. Asian Journal of Mechatronics, and Electrical Engineering, 1(1), 25-34. DOI: 10.55927/journal.formosapublisher.org
  11. Zheng, D., Li, Z., Yao, W., Wang, Y., Sun, C., Tan, H., Zhang, Y. (2024). A maleic anhydride-mediated green and sustainable route for versatile wood platform. Chemical Engineering Journal, 479. DOI: 10.1016/j.cej.2023.147907
  12. Husseinsyah, S., Azmin, A.N., Ismail, H. (2013). Effect of Maleic Anhydride-Grafted-polyethylene (MAPE) and Silane on Properties of Recycled Polyethylene/Chitosan Biocomposites. Polymer - Plastics Technology and Engineering, 52(2), 168–174. DOI: 10.1080/03602559.2012.734362
  13. Müller, M., Kutscherauer, M., Böcklein, S., Wehinger, G.D., Turek, T., Mestl, G. (2022). Modeling the selective oxidation of n-butane to maleic anhydride: From active site to industrial reactor. Catalysis Today, 387, 82–106. DOI: 10.1016/j.cattod.2021.04.009
  14. Trivedi, B.C., Culbertson, B.M. (1982). Maleic Anhydride. Boston, MA: Springer US
  15. Mangili, P.V., Junqueira, P.G., Santos, L.S., Prata, D.M. (2019). Eco-efficiency and techno-economic analysis for maleic anhydride manufacturing processes. Clean Technologies and Environmental Policy, 21(5), 1073–1090. DOI: 10.1007/s10098-019-01693-1
  16. Mangili, P.V., Junqueira, P.G., Santos, L.S., Prata, D.M. (2019). Eco-efficiency and techno-economic analysis for maleic anhydride manufacturing processes. Clean Technologies and Environmental Policy, 21(5), 1073–1090. DOI: 10.1007/s10098-019-01693-1
  17. Ashutosh, G. Optimize Fired Heater Operations to Save Money. Hydrocarbon Processing, (112), 97–104
  18. Zhao, J., Ma, L., Zayed, M.E., Elsheikh, A.H., Li, W., Yan, Q., Wang, J. (2021). Industrial reheating furnaces: A review of energy efficiency assessments, waste heat recovery potentials, heating process characteristics and perspectives for steel industry. Process Safety and Environmental Protection. 147, 1209–1228. DOI: 10.1016/j.psep.2021.01.045
  19. Almosawi, Y.J.K., Alshimmary, W.A.K. (2021). Effect of air combustion preheater on furnace efficiency by using refinery simulator. Journal of Petroleum Research and Studies, 7(3), 75-87. DOI: 10.52716/jprs.v7i3.161
  20. Haratian, M., Amidpour, M., Hamidi, A. (2019). Modeling and optimization of process fired heaters. Applied Thermal Engineering, 157. DOI: 10.1016/j.applthermaleng.2019.113722
  21. Jegla, Z., Vondál, J., Hájek, J. (2015). Standards for fired heater design: An assessment based on computational modelling. Applied Thermal Engineering, 89, 1068–1078. DOI: 10.1016/j.applthermaleng.2015.05.012
  22. Abolpour, B., Nasiri, S., Khosravi, E. (2019). Economic Optimization of the Reflux Ratio of Two Components Stage Distillation Columns. Environmental Energy and Economic Research, 3 (1), 11–21. DOI: 10.22097/eeer.2019.145503.1040
  23. Fitriah, Agustina Sari, D. (2023). Optimization of distillation column reflux ratio for distillate purity and process energy requirements. International Journal of Basic and Applied Science, 12(2), 72-81
  24. Alhaboubi, N.A. (2022). Constant distillate composition of batch distillation column with variable reflux mode based on still pot concentration. Science and Technology for Energy Transition (STET), 77. DOI: 10.2516/stet/2021002
  25. Samwel, M. (2021). Analysis of the effect of feed composition and thermal conditions on distillation plant performance using a computer model. Journal of Chemical Engineering and Materials Science, 12(2), 1–24. DOI: 10.5897/jcems2020.0352
  26. Widyasanti, A., Nurjanah, S., Nurhadi, B., Osman, C.P. (2023). Optimization of the Vacuum Fractional Distillation Process for Enhancing the α-Guaiene of Patchouli Oil with Response Surface Methodology. Separations, 10(9). DOI: 10.3390/separations10090469

Last update:

No citation recorded.

Last update:

No citation recorded.