skip to main content

Aniline Process Creation for Conversion Improvement Using Hydrogenation Process

Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, 50275, Indonesia

Received: 19 Dec 2024; Revised: 9 Jan 2025; Accepted: 13 Jan 2025; Available online: 22 Jan 2025; Published: 30 Jun 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The hydrogenation process of nitrobenzene to aniline is one of the main methods in the chemical industry to produce aniline with high efficiency. This research focuses on optimizing this process through system modification, which includes implementing a recycling flow and adjusting operating conditions such as temperature and pressure. The simulation results show an increase in the conversion of nitrobenzene to aniline by 1.44% after modification, from 96.82% to 98.26%. Although these improvements may seem small, their impact is significant on an industrial scale, especially in reducing raw material waste and energy consumption, making it a more sustainable solution. This study provides valuable insights for improving the efficiency of aniline processes in the context of the global chemical industry. Copyright © 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Nitrobenzene; Aniline production; Hydrogenation; Process modification effect

Article Metrics:

  1. Anjalin, M., Kanagathara, N., & Suganthi, A.R., B. (2020). A brief review on aniline and its derivatives. Material Today: Proceedings, 33, 4751–4755. DOI: 10.1016/j.matpr.2020.08.358
  2. Zhang, Q., Bu, J., Wang, J., Sun, C., Zhao, D., Sheng, G., Xie, X., Sun, M., & Yu, L. (2020). Highly efficient hydrogenation of nitrobenzene to aniline over Pt/CeO2 catalysts: The shape effect of the support and key role of additional Ce3+ sites. ACS Catalysis, 10. DOI: 10.1021/acscatal.0c02730
  3. Couto, C.S., Madeira, L.M., Nunes, C.P., Araújo, P. (2015). Hydrogenation of Nitrobenzene over a Pd/Al2O3 Catalyst - Mechanism and Effect of the Main Operating Conditions. Chemical Engineering and Technology, 38(9), 1625–1636. DOI: 10.1002/ceat.201400468
  4. Grisales Díaz, V.H., Willis, M.J. (2022). Multi objective optimization of aniline and hydrogen production in a directly coupled membrane reactor. International Journal of Hydrogen Energy, 47(19), 10483–10499. DOI: 10.1016/j.ijhydene.2022.01.128
  5. Keypour, H. , Noroozi, M. , Rashidi, A. , & Shariati Rad, M. (2015). Application of Response Surface Methodology for Catalytic Hydrogenation of Nitrobenzene to Aniline Using Ruthenium Supported Fullerene Nanocatalyst. Iranian Journal of Chemistry and Chemical Engineering, 34(1), 21-32. DOI: 10.30492/ijcce.2015.12677
  6. Fukui, M., Koshida, W., Tanaka, A., Hashimoto, K., Kominami, H. (2020). Photocatalytic hydrogenation of nitrobenzenes to anilines over noble metal-free TiO2 utilizing methylamine as a hydrogen donor. Applied Catalysis B: Environmental, 268. DOI: 10.1016/j.apcatb.2019.118446
  7. Damara, L.G.A. (2017). Aniline Plant from Nitrobenzene Through Hydrogenation Process Capacity 35000 Tons. Undergraduate Thesis, Sebelas Maret University
  8. Pujosaputra, C. (2022). Pre-Design of an Aniline Plant from Vapor Phase Nitrobenzene Hydrogenation with a Capacity of 86,000 Tons/Year. Undergraduate Thesis, The Islamic University of Indonesia
  9. Brovko, R.V., Mushinsky, L.S., Latypova, A.R., Sulman, M.G., Matveev, V.G., & Doludaa, V.Y. (2021). Evaluation of nitrobenzene hydrogenation kinetic particularities over mono and bimetallic ni containing hypercrosslinked polystyrene. Chemical Engineering Transactions, 86, 883-888. DOI: 10.3303/CET2186148
  10. Díaz, V.H. G., & Willis, M.J. (2022). Multiobjective optimization of aniline and hydrogen production in a directly coupled membrane reactor. International Journal of Hydrogen Energy, 47(19), 10483–10499. DOI: 10.1016/j.ijhydene.2022.01.128
  11. Liu, B., Wang, Y., Huang, N., Lan, X., Xie, Z., Chen, J. G., Wang, T. (2022). Heterogeneous hydroformylation of alkenes by Rh-based catalysts. Chem., 8(10), 2630-2658. DOI: 10.1016/j.chempr.2022.07.020
  12. Qi, H., Wang, X., Lei, M., Fan, W., Huang, S., Zhu, L., Tang, H. (2024). Highly efficient catalytic hydrogenation of nitrobenzene on cobalt- immobilized nitrogen-doped carbon: A dual-sites synergistic effect between cobalt single atoms and cobalt nanoparticles. Chemical Engineering Journal, 500. DOI: 10.1016/j.cej.2024.157057
  13. Mikheenko, I.P., Bennett, J.A., Omajali, J.B., Walker, M., Johnson, D.B., Grail, B.M., Pascua, D.W., Moseley, J.D., Macaskie, L.E. (2022). Selective hydrogenation catalyst made via heat-processing of biogenic Pd nanoparticles and novel ‘green’ catalyst for Heck coupling using waste sulfidogenic bacteria. Applied Catalysis B: Environmental, 306. DOI: 10.1016/j.apcatb.2021.121059
  14. Sánchez, A.P., García, Y.P., Cruz, L.L.B., Veliz, M.I.L.R. (2024). Simulation and conceptual design of an aniline production process from catalytic hydrogenation of nitrobenzene in ChemCAD. Revista Ingenio, 7(2), 158-175. DOI: 10.18779/ingenio.v7i2.873
  15. Ullmanns. (2012). Encyclopedia of Industrial Chemistry. Interscience Encyclopedia, Inc.: New York
  16. Javaid, A., Bildea, C.S. (2017). Design and control of an integrated toluene aniline production plant a preliminary study. International Journal of Chemical Engineering and Applications, 8(4), 267–271. DOI: 10.18178/ijcea.2017.8.4.668
  17. McCullagh, A.M., Davidson, A.L., Ballas, C.E., How, C., MacLaren, D. A., Boulho, C., Brennan, C., Lennon, D. (2024) The application of an alumina-supported Ni catalyst for the hydrogenation of nitrobenzene to aniline. Catalysis Today, 442. DOI: 10.1016/j.cattod.2024.114933
  18. Taylor, C.J., Pomberger, A., Felton, K.C., Grainger, R., Barecka, M., Chamberlain, T.W., Bourne, R.A., Johnson, C.N., Lapkin, A.A. (2023) A brief introduction to chemical reaction optimization. Chem. Rev., 123(6), 3089-3126. DOI: 10.1021/acs.chemrev.2c00798
  19. May, A.S., & Biddinger, E.J. (2020). Strategies to control electrochemical hydrogenation and hydrogenolysis of furfural and minimize undesired side reactions. ACS Catalysis, 10, 3212−3221. DOI: 10.1021/acscatal.9b05531
  20. Gopi, R., Vinoth, T., Angkayarkan, V.M., Anand, R. (2022). A critical review of recent advancements in continuous flow reactors and prominent integrated microreactors for biodiesel production. Renewable and Sustainable Energy Reviews, 154, 111869. DOI: 10.1016/j.rser.2021.111869
  21. Yaws, C.L. (1999). Chemical Properties Handbook. New Yeark: McGraw-Hill
  22. Marella, R.K., Madduluri, V.R., Lakkaboyana, S.K., Hanafiah, M.M., & Yaaratha, S. (2020). Hydrogen-free hydrogenation of nitrobenzene via direct coupling with cyclohexanol dehydrogenation over ordered mesoporous MgO/SBA-15 supported Cu nanoparticles. RSC Advances, 10(64), 38755–38766. DOI: 10.1039/d0ra06003h
  23. Qu, Y., An, H., Zhao, X., & Wang, Y. (2024). Insight into the roles of HEPES and ethanol in one-pot preparation of ZrO2@Pt catalyst for efficient selective hydrogenation of nitrobenzene. Chemical Engineering Journal, 496. DOI: 10.1016/j.cej.2024.153949
  24. Pandey, M., Jadav, D., Manhas, A., Kediya, S., Tsunoji, N., Kumar, R., Das, S., Bandyopadhyay, M. (2022). Synthesis and characterization of mononuclear Zn complex, immobilized on ordered mesoporous silica and their tunable catalytic properties. Molecular Catalysis, 525. DOI: 10.1016/j.mcat.2022.112365
  25. Gao, X., Lin, Z., Li, T., Huang, L., Zhang, J., Askari, S., Dewangan, N., Jangam, A., & Kawi, S. (2021). Recent Developments in Dielectric Barrier Discharge Plasma-Assisted Catalytic Dry Reforming of Methane over Ni-Based Catalysts. Catalysts, 11(4), 455. DOI: 10.3390/catal11040455
  26. Wang, H., Shi, F., Pu, M., & Lei, M. (2022). Theoretical Study on Nitrobenzene Hydrogenation by N-Doped Carbon-Supported Late Transition Metal Single-Atom Catalysts. ACS Catalysis, 12(18), 11518-11529. DOI: 10.1021/acscatal.2c02373
  27. Musavuli, K.C., Engelbrecht, N., Everson, R.C., Modisha, P., Kolb, G., Zapf, R., Hofmann, C., & Bessarabov, D. (2023). Experimental Evaluation of a Coated Foam Catalytic Reactor for the Direct CO2-to-Methanol Synthesis Process. ChemEngineering, 7(2), 16. DOI: 10.3390/chemengineering7020016
  28. Tavana, M., Dashtebayaz, M. D., Gholizadeh, M., Ghorbani, S., Dadpour, D. (2024). Optimizing building energy efficiency with a combined cooling, heating, and power (CCHP) system driven by boiler waste heat recovery. Journal of Building Engineering, 97. DOI: 10.1016/j.jobe.2024.110982
  29. Kumar, A., Awasthi, M.K., Sheet, N., Kharde, T.A., Singh, S.K. (2023). One-pot upcycling of waste plastics for selective hydrogenproduction at low-temperature. ChemCatChem, 15, 1-10. DOI: 10.1002/cctc.202300574

Last update:

No citation recorded.

Last update:

No citation recorded.