skip to main content

Total Net Energy Assessment for Rule-of-Thumb Applications in Multicomponent Distillation Separation Strategy

1Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang, Indonesia

2Industrial Chemical Engineering Technology, Vocational College, Universitas Diponegoro, Indonesia

Received: 26 May 2025; Revised: 3 Jun 2025; Accepted: 4 Jun 2025; Available online: 5 Jun 2025; Published: 30 Jun 2025.
Editor(s): Andri Cahyo Kumoro
Open Access Copyright (c) 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Energy saving in separation systems, particularly in distillation systems, is a research field that has attracted considerable innovative approaches. A distillation system is an essential separation process, yet it is inefficient in using thermal energy, and may operate with adverse environmental impact as it discharges a large amount of thermal energy into the environment. In this work, several Sequences Designs of Distillation Column Network are proposed to be compared with respect to Total Net Energy of each sequence design. Applying the Rule of Thumb of Distillation Strategy for separating multicomponent mixtures is important by performing the easiest separation first (largest relative volatility), that is, the one least demanding of trays and reflux, and leaving the most difficult to the last. From all sequence designs results, Sequence-A shows the lowest Total Net Energy (9,750,720.88 kJ/h), because the Sequence-A follows the strategy/procedure for separation of multicomponent using distillation column network. Decreasing the relative volatility affects on increasing number of tray and recycle ratio required for distillation process and decreasing the Net Energy. Copyright © 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Distillation; Multicomponent; Separation; Rule of Thumb; Total Net Energy

Article Metrics:

  1. Ramapriya, G.M., Selvarajah, A., Jimenez Cucaita, L.E., Huff, J., Tawarmalani, M., Agrawal, R. (2018) Short-cut methods versus rigorous methods for performance-evaluation of distillation configurations. Ind. Eng. Chem. Res., 57, 7726-7731, DOI: 10.1021/acs.iecr.7b05214
  2. Aggarwal, A., Floudas, C.A. (1990) Synthesis of general distillation sequences—nonsharp separations. Comput. Chem. Eng., 14, 631-653, DOI: 10.1016/0098-1354(90)87033-L
  3. Giridhar, A., Agrawal, R. (2010) Synthesis of distillation configurations. II: A search formulation for basic configurations, Comput. Chem. Eng., 34, 84-95, DOI: 10.1016/j.compchemeng.2009.05.004
  4. Ramapriya, G.M., Selvarajah, A., Jimenez Cucaita, L.E., Huff, J., Tawarmalani, M., Agrawal, R. (2018) Short-cut methods versus rigorous methods for performance-evaluation of distillation configurations, Ind. Eng. Chem. Res., 57, 7726-7731, DOI: 10.1021/acs.iecr.7b05214
  5. Ryu, J., Maravelias, C.T. (2020) Computationally efficient optimization models for preliminary distillation column design and separation energy targeting, Comput. Chem. Eng., 143, 107072, DOI: 10.1016/j.compchemeng.2020.107072
  6. Ryu, J., Maravelias, C.T. (2021) A generalized distillation network synthesis model. Chem. Eng. Sci., 244, 116766, DOI: 10.1016/j.ces.2021.116766
  7. Floudas, C.A., Anastasiadis, S.H. (1988) Synthesis of distillation sequences with several multicomponent feed and product streams, Chem. Eng. Sci., 43, 2407-2419, DOI: 10.1016/0009-2509(88)85175-3
  8. Cheng, S.H., Liu, Y.A. (1988) Studies in chemical process design and synthesis. 8. A simple heuristic method for the synthesis of initial sequences for sloppy multicomponent separations. Ind. Eng. Chem. Res., 27, 2304-2322, DOI: 10.1021/ie00084a016
  9. Nishida, N., Stephanopoulos, G., Westerberg, A.W. (1981) A review of process synthesis, AIChE J., 27, 321-351, DOI: 10.1002/aic.690270302
  10. Chen, Q., Grossmann, I. (2017) Recent Developments and Challenges in Optimization-Based Process Synthesis, Ann. Rev. Chem. Biomol. Eng., 8, 249-283, DOI: 10.1146/annurev-chembioeng-080615-033546
  11. Tedder, D.W., Rudd, D.F. (1978) Parametric studies in industrial distillation: Part II. Heuristic optimization, AIChE J., 24, 316-323, DOI: 10.1002/aic.690240221
  12. Tedder, D.W., Rudd, D.F. (1978) Parametric studies in industrial distillation: Part I. Design comparisons, AIChE J., 24, 303-315, DOI: 10.1002/aic.690240220
  13. Gomez-Munoz, A., Seader, J.D. (1985) Synthesis of distillation trains by thermodynamic analysis. Comput. Chem. Eng., 9, 311-341, DOI: 10.1016/0098-1354(85)85011-0
  14. Stephanopoulos, G., Westerberg, A.W. (1976) Studies in process synthesis—II: Evolutionary synthesis of optimal process flowsheets, Chem. Eng. Sci., 31, 195-204, DOI: 10.1016/0009-2509(76)85057-9
  15. Seader, J.D., Westerberg, A.W. (1977) A combined heuristic and evolutionary strategy for synthesis of simple separation sequences, AIChE J., 23, 951-954, DOI: 10.1002/aic.690230628
  16. Nogaja, A.S., Mathew, T.J., Tawarmalani, M., Agrawal, R. (2022) Identifying Heat-Integrated Energy-Efficient Multicomponent Distillation Configurations, Industrial and Engineering Chemistry Research, 61 (37), 13984-13995. DOI: 10.1021/acs.iecr.2c00870
  17. Shenvi, A.A., Shah, V.H., Zeller, J.A., Agrawal, R. (2012) A synthesis method for multicomponent distillation sequences with fewer columns. AIChE Journal, 58 (8), 2479 - 2494. DOI: 10.1002/aic.12752
  18. Giri, P.A., Mahajan, Y.S. (2022). Selecting the optimal sequence of distillation column train for multicomponent separation system. Materials Today: Proceedings, 57, 2452 – 2456, DOI: 10.1016/j.matpr.2022.03.125
  19. Tsirlin, A., Sukin, I., Balunov, A. (2019). Selection of Optimum Separation Sequence for Multicomponent Distillation. ChemEngineering, 3(3), 69, DOI: 10.3390/chemengineering3030069
  20. Mathew, T.J., Narayanan, S., Jalan, A., Matthews, L.R., Gupta, H., Billimoria, R., Pereira, C.S., Goheen, C., Tawarmalani, M., Agrawal, R. (2024) Optimization of distillation configurations for multicomponent-product distillations. Computers and Chemical Engineering, 184, 108628, DOI: 10.1016/j.compchemeng.2024.108628

Last update:

No citation recorded.

Last update:

No citation recorded.