skip to main content

Improving Purity of Maleic Anhydride Production by Multi-stage Distillation

Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, 50275, Indonesia

Received: 19 Dec 2024; Revised: 24 Dec 2024; Accepted: 27 Dec 2024; Available online: 17 Jan 2025; Published: 30 Jun 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The maleic anhydride production via benzene oxidation is a highly exothermic reaction which causes the product temperature will increase then it needs to be cooled down with a heat exchanger. The modification process is needed to improve the purity of the maleic anhydride process by adding stage of distillation. Maleic anhydride with lower purity from the first distillation is then distilled again in order to improve its purity. The process modification was simulated using Aspen HYSYS and the comparison of maleic anhydride purity between the basic and the modified process is shown in the form of table based on the material stream. The results obtained that the purity of maleic anhydride for both basic and modified process is about 62.64% and 97.72%. This shows that the modified process has higher maleic anhydride purity compared to the basic process as the purity is closer to 100%. Therefore, this modification increases the maleic anhydride purity of the production through benzene oxidation process. Copyright © 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Maleic anhydride; Benzene; Oxidation; Process modification; Multistage distillation; Purity

Article Metrics:

  1. Hartwig, A., Commission, M.A.K. (2023). Maleic anhydride. The MAK Collection for Occupational Health and Safety, 8(1), DOI: 10.34865/mb10831e8_1ad
  2. Hernández-Moreno, D., de la Casa Resino, I., Soler-Rodríguez, F. (2014). Maleic Anhydride. Encyclopedia of Toxicology, 13, 138–141. DOI: 10.1016/b978-0-12-386454-3.01185-4
  3. Huang, Y., Jin, T., Zeng, H., Liu, L., Xu, K., Chai, X., Zhang, L. (2023). Development of novel sustainable hyperbranched polyester wood adhesives from glycerol and maleic anhydride by solvent free method. Industrial Crops and Products, 204, 117326. DOI: 10.1016/j.indcrop.2023.117326
  4. Ali, E., Ali, M.A.H., Alhumaizi, K., Elharbawi, M. (2017). Optimal oxygen feeding policy to maximize the production of Maleic anhydride in unsteady state fixed bed catalytic reactors. Journal of King Saud University-Engineering Sciences, 29(3), 204-211. DOI: 10.1016/j.jksues.2015.12.001
  5. Savani, N.G., Naveen, T., Dholakiya, B.Z. (2023). A review on the synthesis of maleic anhydride-based polyurethanes from renewable feedstock for different industrial applications. Journal of Polymer Research, 30(5), 175. DOI: 10.1007/s10965-023-03543-7
  6. Agirre, I., Gandarias, I., Granados, M.L., Arias, P.L. (2020). Process design and techno-economic analysis of gas and aqueous phase maleic anhydride production from biomass-derived furfural. Biomass Conversion and Biorefinery, 10(4), 1021-1033. DOI: 10.1007/s13399-019-00462-w
  7. Mangili, P.V., Junqueira, P.G., Santos, L.S., Prata, D.M. (2019). Eco-efficiency and techno-economic analysis for maleic anhydride manufacturing processes. Clean Technologies and Environmental Policy, 21, 1073-1090. DOI: 10.1007/s10098-019-01693-1
  8. Müller, M., Kutscherauer, M., Böcklein, S., Mestl, G., Turek, T. (2020). On the importance of by-products in the kinetics of n-butane oxidation to maleic anhydride. Chemical Engineering Journal, 401, 126016. DOI: 10.1016/j.cej.2020.126016
  9. Papracanin, E., Dozic, A., Mujkic, E., Hodzic, M., Hodzic, I., Poljic, B., Ramic, A. (2022). Separation of fumaric and maleic acid crystals from the industrial wastewater of maleic anhydride production. Hungarian Journal of Industry and Chemistry, 50(2), 1-6. DOI: 10.33927/hjic-2022-10
  10. Wojcieszak, R., Santarelli, F., Paul, S., Dumeignil, F., Cavani, F., Gonçalves, R.V. (2015). Recent developments in maleic acid synthesis from bio-based chemicals. Sustainable Chemical Processes, 3, 1-11. DOI: 10.1186/s40508-015-0034-5
  11. Li, H., Wu, P., Li, X., Pang, J., Zhai, S., Zhang, T., Zheng, M. (2022). Catalytic hydrogenation of maleic anhydride to γ-butyrolactone over a high-performance hierarchical Ni-Zr-MFI catalyst. Journal of Catalysis, 410, 69-83. DOI: 10.1016/j.jcat.2022.04.011
  12. Cucciniello, R., Cespi, D., Riccardi, M., Neri, E., Passarini, F., Pulselli, F.M. (2023). Maleic anhydride from bio-based 1-butanol and furfural: a life cycle assessment at the pilot scale. Green Chemistry, 25, 5922–5935. DOI: 10.1039/d2gc03707f
  13. Mestl, G., Lesser, D., Turek, T. (2016). Optimum Performance of Vanadyl Pyrophosphate Catalysts, Topics in Catalysis, 59, 17-18. DOI: 10.1007/s11244-016-0673-0
  14. Yu, T.Y., Kuo, C.T., Lai, C.K., Won, W., Yu, B.Y. (2024). Unraveling the alternative process configurations for more environmentally friendly Maleic Anhydride production. Process Safety and Environmental Protection, 191, 2385-2401. DOI: 10.1016/j.psep.2024.09.116
  15. Musa, O.M. (2016). Handbook of Maleic Anhydride Based Materials Syntheses, Properties and Applications. Switzerland: Springer International Pubblishing. DOI: 10.1007/978-3-319-29454-4_1
  16. Novelli, M., Leonardi, M., Cortelli, C. (2014). Selective Oxidation Reactions in Polynt: An Overview of Processes and Catalysts for Maleic Anhydride. Handbook of Advanced Methods and Processes in Oxidation Catalysis, 334–352. DOI: 10.1142/9781848167513_0014
  17. Yaws, C.L. (1999). Chemical Properties Handbook. NewYork: Mc Graw Hill Handbooks
  18. Samimi, J. (2023). Evolution of the Oxidation Reaction and its Stability. Journal of Thermodynamics & Catalysis, 14(6). DOI: 10.32548/2157-7544.23.14.363
  19. Ullman, F. (2003). Ullman’s Encyclopedia of Industrial Chemistry. DOI: 10.1002/14356007
  20. Turton, R., Shaeiwitz, J.A., Bhattacharya, D. (2018). Analysis, Synthesis, and Design of Chemical Processes Fifth Edition. Michigan: Prentice Hall

Last update:

No citation recorded.

Last update:

No citation recorded.