skip to main content

Enhancing Energy Efficiency of Hydrodealkylation (HDA) Toluene for Benzene Production through Optimizing Utility Tool (Pinch Analysis)

Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Soedarto, Tembalang, Semarang, 50275, Indonesia

Received: 19 Dec 2024; Revised: 24 Dec 2024; Accepted: 27 Dec 2024; Available online: 29 Dec 2024; Published: 30 Dec 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Benzene is one of the chemicals widely used in domestic and industrial products. There have been many extensive studies conducted on hydrodealkylation processes to produce benzene from toluene to achieve the optimum result. Aspen hysys V.11 used to simulate hydrodealkylation process. In this study, this work aims to optimize energy efficiency and manage the heat generated by the highly exothermic hydrodealkylation reaction by adjusting the utility type of the heater and cooler. The results of the analysis and calculations, the utility modifications in the heat exchanger network system have proven to have a positive impact on energy efficiency and overall performance. With high energy efficiency, the system is able to reduce reliance on auxiliary utilities while improving the sustainability of the production process. This approach is not only beneficial from an operational perspective but also contributes significantly to cost savings and reduced environmental impact, making it a very viable solution to implement. Copyright © 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Benzene; Hydrodealkylation; Utilities; Pinch Analysis; Optimization Energy

Article Metrics:

  1. Rajkumar, R., Ilango, B., Vinothkumar, K., Savidha, R., Senthilkumar, S., Ezhilarasan, D., & Sukumar, E. (2022). Moringa oleifera seeds attenuate benzene-induced alterations in lipid peroxidation and antioxidant enzymes in liver and kidney tissues of Wistar rats. Indian Journal of Biochemistry and Biophysics (IJBB), 60 (1), 26-30. DOI : 10.56042/ijbb.v60i1.55819
  2. Agustriyanto, R., Setyupratomo, P., Mochini, E. S., & Purwanto, E. (2024). Simulation of the Hydrodealkylation of Toluene Using Conversion Reactor. Keluwih: Jurnal Sains dan Teknologi, 5 (1), 19-26. DOI: 10.24123/saintek.v5i1.6351
  3. Iranshahi, D., Saeedi, R., Azizi,K., & Nategh, M. (2017). A novel integrated thermally coupled moving bed reactors for naphtha reforming process with hydrodealkylation of toluene. Applied Thermal Engineering, 112, 1040-1056. DOI: 10.1016/j.applthermaleng.2016.10.118
  4. Rani, J., Thakur, P., & Majumber, S. (2024). Energy integration of hydrodealkylation (HDA) of toluene. Materials Today: Proceedings, 111, 60–68. DOI: 10.1016/j.matpr.2023.11.044
  5. Ye, L., Krolicka, M., & Cao, Y. (2018). Control reconfiguration to improve HDA process optimality. IFAC-PapersOnLine, 51 (18), 434-439. DOI: 10.1016/j.ifacol.2018.09.339
  6. Andalib, E., Zeyinali, R., & Ghasemzadeh, K. (2015). Perfomance evaluation of palladuim membrane reactor for hydrodealkylation of toluene using CFD method. 12th International Conference on Catalysis in Membrane Reactors
  7. Liu, K., Zhang, B.J., Zhang, Z.L., & Chen,Q.L. (2015). A new double flash process and heat integration for better energy utilization of toluene disproportionation. Energy, 89,168-177. DOI: 10.1016/j.energy.2015.07.048
  8. Bartolome, P.S., & Van Gerven, T. (2022). A comparative study on Aspen Hysys interconnection methodologies. Computers & Chemical Engineering, 162, 107785. DOI: 10.1016/j.compchemeng.2022.107785
  9. Valverde, J.L., Ferro, V.R., & Giroir‐Fendler, A. (2023). Automation in the simulation of processes with Aspen HYSYS: An academic approach. Computer Applications in Engineering Education, 31 (2), 376-388. DOI: 10.1002/cae.22589
  10. Giwa, A., Giwa, S.O., & Olugbade, E.A. (2018). Application of Aspen HYSYS process simulator in green energy revolution: A case study of biodiesel production. ARPN J. Eng. Appl. Sci, 13(2), 569-581
  11. Luyben, W.L., Tyreus, B.D., & Luyben, M. L. (1999). Plantwide Process Control. McGraw-Hill: New York
  12. Seow, Y., Goffin, N., Rahimifard, S., & Wooley, E. (2016). A ‘Design for Energy Minimization’ approach to reduce energy consumption during the manufacturing phase. Energy, 109, 894-905. DOI: 10.1016/j.energy.2016.05.099
  13. Wilson, L., Lichinga, K.N., Kilindu, A.B., & Masse, A.A. (2021). Water utilities’ improvement: The need for water and energy management techniques and skills. Water Cycle, 2, 32–37. DOI: 10.1016/j.watcyc.2021.05.002
  14. Yaxian, Z., Yingjie, Z., Yi, H., Jiancheng, W., Weiren, B., Liping, C., Lijuan, S., & Qun, Y. (2022). Pinch Analysis for Heat Integration of Pulverized Coke Chemical Looping Gasification Coupled with Coke-Oven Gas to Methanol and Ammonia. Processes, 10, 1879. DOI: 10.3390/pr10091879
  15. Marzouk, S.A., Al-Sood, M.M.A., & El-Fakharany, M.K. (2023). A comprehensive review of methods of heat transfer enhancement in shell and tube heat exchangers. Journal of Thermal and Calorimetry, 148(1), 7539–7578. DOI: 10.1007/s10973-023-12265-3
  16. Huang, T. (2015). Maximum Energy Recovery Heat Exchanger Network Design
  17. Buchori, L. & Putri, F.M.Y. (2022). Pinch Analysis For Styrene Production With Lummus/UOP Smart SM Technology. International Conference on Chemical and Material Engineering, 1053, 1-8. DOI: 10.1088/1757-899X/1053/1/012105
  18. Widayat, W., Saeed, M.T.M.N., Sulardjaka, S., Suprihanto, A., & Wahyudi, P. (2022). Study of Energy Integration in Chlorobenzene Production Process Using Pinch Technology. International Journal on Engineering Applications (IREA), 10(6), 393-400. DOI: 10.15866/irea.v10i6.20960
  19. Walmsley, T.G. Lal, N.S., Varbanov, P.S., & Klemeš, J.J. (2018). Automated retrofit targeting of heat exchanger networks. Front. Chem. Sci. Eng., 12, 630-642. DOI: 10.1007/s11705-018-1747-2
  20. Linnhoff, B., Townsend, D.W., Hewitt, G.F., Thomas, B.E.A., Guy, A.R., & Marsland, R.H. (2007). Pinch Analysis and Process Integration A User Guide on Process Integration for the Efficient Use of Energy, 2nd edition. USA: Butterworth-Heinemann

Last update:

No citation recorded.

Last update:

No citation recorded.