skip to main content

Enhancing Propylene Glycol Product Yield by Modifying the Glycerol Hydrogenation Process

1Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudharto, Tembalang, Semarang, Jawa Tengah, 50275, Indonesia

2Department of Chemical Engineering, Universitas Gajah Mada, Jl. Grafika No.2, Senolowo, Sinduadi, Mlati, Sleman, Daerah Istimewa Yogyakarta 55281, Indonesia

Received: 19 Dec 2024; Revised: 20 Dec 2024; Accepted: 27 Dec 2024; Available online: 29 Dec 2024; Published: 30 Dec 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The production of propylene glycol from glycerol is an emerging and sustainable approach in the chemical industry that can be considered completely renewable. Glycerol, a byproduct of biodiesel production, has gained attention as an alternative feedstock for the synthesis of value-added chemicals such as propylene glycol. This paper evaluates how to perform process modification for optimization of propylene glycol product yield. The process modification was carried out by adding compressor unit before entering a heater, adding heater unit before entering a mixer, and adding 2 separator unit before entering a distillation column. By modifying the addition of compressor unit, heater unit, and 2 separator unit, it has been proven that it can optimizing the propylene glycol product yield by up to 99.75%. Copyright © 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Propylene glycol; process modification; process Optimization; Product yield

Article Metrics:

  1. Lim, Y., Poole, L., & Pageler, M. (2014). Propylene glycol toxicity in childen, J Pediatr Pharmacol Ther, 19, 277-282. DOI: 10.5863/1551-6776-19.4.277
  2. Nakagawa, Y., & Tomishige, K. (2011). Heterogeneous catalysis of the glycerol hydrogenolysis. Catal. Sci. Technol, 1, 179–190. DOI: 10.1039/C0CY000054J
  3. Gatti, M. N., Nichio, N. N., & Pompeo, F. (2022). Advances for biorefineries: glycerol hydrogenolysis to 1,3-propylene glycol. Reactions, 3, 451-498. DOI: 10.3390/reactions3030032
  4. Jimenez, X., Young, F., & Fernandes, L. S. (2020). Propylene glycol from glycerol: Process evaluation and break-even price determination. Renewable Energy, 158, 181-191. DOI: 10.1016/j.renene.2020.05.126
  5. Brobbey, M., Louw, J., & Gorgengs, J. (2024). Biobased propylene glycol production in a sugarcane biorefinery through lactic acid, glycerol, or sorbitol: A techno-economic and environmental evaluation of intermediates and downstream processing methods. Biochemical Engineering Journal, 205, 109292. DOI: 10.1016/j.bej.2024.109292
  6. Nanda, R., Zhongshun, Y., Wensheng, Q., & Chunbao, X. (2016). Recent advancements in catalytic conversion of glycerol into propylene glycol, Catalysis Reviews, 58, 309-336. DOI: 10.1080/01614940.2016.1166005
  7. Ullmann, F. (2005). Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, German
  8. Isabelle, C. F., Robinson L. M., Mariana M. V. M. S. (2017). Hydrogenolysis of glycerol to propylene glycol in continuous system without hydrogen addition over Cu-Ni catalysts. Applied Catalysis B: Environmental, 220, 31-41. DOI: 10.1016/j.apcatb.2017.08.030
  9. Maris, E. P., & Davis, R. J. (2007). Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts, Journal of Catalysis, 249, 328–337. DOI: 10.1016/j.jcat.2007.05.008
  10. Gandarias, I., Requies, J., Arias, P. L., Armbruster, U., & Martin, A. (2012). Liquid-phase glycerol hydrogenolysis by formic acid over Ni-Cu/Al2O3catalysts. Journal of Catalysis, 290, 79–89. DOI: 10.1016/j.jcat.20212.03.004
  11. Yun, Y. S., Park, D. S., & Yi, J. (2014). Effect of nickel on catalytic behaviour of bimetallic Cu-Ni catalyst supported on mesoporous alumina for the hydrogenolysis of glycerol to 1,2-propanediol. Catalyst Science Technology, 4, 3191–3202. DOI: 10.1039/C4CY00320A
  12. Seretis, A., & Tsiakaras. P. (2016). Hydrogenolysis of glycerol to propylene glycol by in situ produced hydrogen from aqueous phase reforming of glycerol over SiO2-Al2O3supported nickel catalyst. Fuel Processing Technology, 142, 135–146. DOI: 10.1016/j.fuproc.2015.10.013
  13. An, R., Chen, S., Hou, S., Zhu, Y., Li, C., Zhu, X., Liu, R., & An, W. Simulation and design of a heat-integrated double-effect reactive distillation process for propylene glycol methyl ether production. Chinese Journal of Chemical Engineering, 52, 103-114. DOI: 10.1016/j.cjche.2021.11.021
  14. Restrepo, J. B., Paternina-Arboleda, C. D., & Bula, A. J. (2021). 1, 2—Propanediol production from glycerol derived from biodiesel’s production: Technical and economic study. Energies, 14(16), 5081. DOI: 10.3390/en14165081
  15. de Faria, D. R. G., de Medeiros, J. L., & Araújo, O. de Q. F. (2021). Screening biorefinery pathways to biodiesel, green-diesel, and propylene-glycol: A hierarchical sustainability assessment of process. Journal of Environmental Management, 300, 113772. DOI: 10.1016/j.jenvman.2021.113772
  16. Okolie, J. A., Omoarukhe, F. O., Epelle, E. I., Ogbaga, C. C., Adeleke, A. A., & Okoye, P. U. (2023). Biomethane and propylene glycol synthesis via a novel integrated catalytic transfer hydrogenolysis, carbon capture and biomethanation process. Chemical Engineering Journal Advances, 16, 100523. DOI: 10.1016/j.ceja.2023.100523
  17. Yaws, C. L. (1999). Chemical Properties Handbook. p. 1-29, 185-211, 288-313. McGraw Hill Company, Inc., New York
  18. Tamargo, J., Rosano, G. (2020). Low-quality of some generic medicinal products represents a matter for growing concern. European Heart Journal - Cardiovascular Pharmacotherapy, 6(3), 176-178. DOI: 10.1093/ehjcvp/pvz037/5566494
  19. Kruschitza, A., & Nidetzky, B. (2020). Downstream processing technologies in the biocatalytic production of oligosaccharides. Biotechnology Advances, 43. DOI: 10.1016/j.biotechadv.2020.107568
  20. Reynoso, A. J., Ayastuy, J. L., Iriarte-Velasco, U., & Gutiérrez-Ortiz, M.A. (2023). Bio‑hydrogen and valuable chemicals from industrial waste glycerol via catalytic aqueous-phase transformation. Fuel Processing Technology, 242. DOI: 10.1016/j.fuproc.2022.107634

Last update:

No citation recorded.

Last update:

No citation recorded.