skip to main content

Minimizing Process Water and Energy Consumption in Styrene Production by Ethylbenzene Dehydrogenation

Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Indonesia

Received: 19 Dec 2024; Revised: 20 Dec 2024; Accepted: 26 Dec 2024; Available online: 28 Dec 2024; Published: 30 Dec 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Styrene is a crucial unsaturated aromatic monomer with a wide range of industrial applications. Styrene production faces several problems where the water supply and energy usage are keep increasing. Process modifications were implemented to minimize process water and to optimize the energy consumption. The modification uses Aspen HYSYS simulation by replacing coolers and heaters with heat exchanger and implementing water recycling system. Aspen HYSYS simulations show these changes reduce water usage by 89.8% and significantly decrease energy consumption up to 54.69%. This modification shows the water and energy usage have been significantly reduced than the basic process. Copyright © 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Styrene; Process water minimization; Net energy; Process modification; Ethylbenzene Dehydrogenation

Article Metrics:

  1. Behr, A. (2017). Styrene production from ethyl benzene. Retrieved July, 13, 2017
  2. Tang, R., Zhou, Y., & Xie, L. (2024). Experimental, Kinetics, and Reactor Modeling Studies of the Direct Dehydrogenation of Ethylbenzene to Styrene in the Fixed-Bed Reactor. Industrial & Engineering Chemistry Research, 63(27), 11848-11860. DOI: 10.1021/acs.iecr.4c01175
  3. Benadda, M., Ferrahi, M.I., & Meghabar, R. (2021). Synthesis of Propylene Oxide - Styrene Copolymers. Letters in Applied NanoBioScience, 10 (3), 2389-2395. DOI: 10.33263/LIANBS103.23892395
  4. Medeiros, A.M., Bourgeat-Lami, E., & McKenna, T.F. (2020). Styrene-butadiene rubber by miniemulsion polymerization using in situ generated surfactant. Polymers, 12(7), 1476. DOI: 10.3390/polym12071476
  5. Han, Q., Li, P., Yuan, Y., Zhang, X., Guo, H., & Xu, L. (2020). Efficient synthesis of styrene from toluene with MeOH: Via a ternary composite catalyst. Applied Catalysis A: General, 605, 117807. DOI: 10.1016/j.apcata.2020.117807
  6. Tiso, T., Winter, B., Wei, R., Hee, J., de Witt, J., Wierckx, N., Quicker, P., Bornscheuer, U. T., Bardow, A., Nogales, J., & Blank, L. M. (2022). The metabolic potential of plastics as biotechnological carbon sources–review and targets for the future. Metabolic Engineering, 71, 77-98. DOI: 10.1016/j.ymben.2021.12.006
  7. Eldien, W.N., Almnem, E.A., Elhosane, Y., Abdelhameed, M.O., & El-Faroug, M.O. (2017). Simulation to Production of Styrene by Catalytic Dehydrogenation of Ethyl Benzene. International Journal of Trend in Research and Development, 4(4), 9-12
  8. Zhu, X., Gao, Y., Wang, X., Haribal, V., Liu, J., Neal, L. M., Bao, Z., Wu, Z., Wang, H., & Li, F. (2021). A tailored multi-functional catalyst for ultra-efficient styrene production under a cyclic redox scheme. Nature Communications, 12(1), 1329. DOI: 10.1038/s41467-021-21374-2
  9. Bose, K., & Soloman, P.A. (2021). Dynamic simulation of manufacture of styrene by the catalytic dehydrogenation of ethyl benzene. In IOP Conference Series: Materials Science and Engineering (Vol. 1114, No. 1, p. 012095). IOP Publishing. DOI: 10.1088/1757-899X/1114/1/012095
  10. Valverde, J. L., Ferro, V. R., & Giroir‐Fendler, A. (2023). Automation in the simulation of processes with Aspen HYSYS: An academic approach. Computer Applications in Engineering Education, 31(2), 376-388. DOI: 10.1002/cae.22589
  11. Aljaberi, S.A.A.A., Rahman, N.I.A (2023). Development of Operator Training Simulator (Ots) in Refining Process for Atmospheric Distillation Column. Journal of Engineering Science and Technology, 18(4), 2221-2237
  12. Ali, E., & Hadj-Kali, M. (2018). Energy efficiency analysis of styrene production by adiabatic ethylbenzene dehydrogenation using exergy analysis and heat integration. Polish Journal of Chemical Technology, 20(1), 35-46. DOI: 10.2478/pjct-2018-0006
  13. Pham, L.H.H.P., Le, D.A., Tran, V.Q., Nguyen, T.A., & Nguyen, T.K. (2021, December). A dynamic simulation of a styrene production process. In IOP Conference Series: Earth and Environmental Science, 947(1), 012006. DOI: 10.1088/1755-1315/947/1/012006
  14. Buchori, L., & Putri, F.M.Y. (2021, February). Pinch Analysis for Styrene Production With Lummus/UOP Smart SM Technology. In IOP Conference Series: Materials Science and Engineering, 1053(1), 001205. DOI: 10.1088/1757-899X/1053/1/012105
  15. Stephane, C., Margaux, D., Maria, F., Gilles., J., Amaury, L., Thibault, P., Mateo, T., & Yifan, W. (2024). Process design of styrene monomer production. Science Appliquess, 1-15
  16. Ghahraloud, H. & Farsi, M. (2017). Modeling and optimization of methanol oxidation over metal oxide catalyst in an industrial fixed bed reactor. Journal of the Taiwan Institute of Chemical Engineers, 81, 95-103. DOI: 10.1016/j.jtice.2017.10.003
  17. Zhu, L., Jacob, D.J., Keutsch, F.N., Mickley, L.J., Scheffe, R., Strum, M., González Abad, G., Chance, K., Yang, K., Rappenglück, B., Millet, D.B., Baasandorj, M., Jaeglé, L., Shah, V. (2017). Formaldehyde (HCHO) As a Hazardous Air Pollutant: Mapping Surface Air Concentrations from Satellite and Inferring Cancer Risks in the United States. Environmental Science and Technology, 51 (10), 5650–5657. DOI: 10.1021/acs.est.7b01356
  18. Thrane, J., Mentzel, U. V., Thorhauge, M., Høj, M., Jensen, A.D. (2021). A review and experimental revisit of alternative catalysts for selective oxidation of methanol to formaldehyde. Catalysts, 11, DOI: 10.3390/catal11111329
  19. Puhar, J., Vujanović, A., Awad, P., & Čuček, L. (2021). Reduction of cost, energy and emissions of the formalin production process via methane steam reforming. Systems, 9(1), 5. DOI: 10.3390/systems9010005
  20. Purnamasari, H.N., Kurniawan, T., Nandiyanto, A.B.D. (2021). Design of shell and tube type heat exchanger for nanofibril cellulose production process. International Journal of Research and Applied Technology (INJURATECH), 1 (2), 318-329. DOI: 10.34010/injuratech.v1i2.6410
  21. Dhavle, S.V., Kulkarni, A.J., Shastri, A., Kale, I.R. (2018). Design and economic optimization of shell-and-tube heat exchanger using cohort intelligence algorithm. Neural Computing and Applications, 30, 111-125. DOI: 10.1007/s00521-016-2683-z
  22. Kartika, S.A., Abdullah, N.H., Saksono, P. (2023). Energy saving analysis using burner/thermal tank and heater electric in the marine fuel oil (mfo) treatment process. Sintek Jurnal: Jurnal Ilmiah Teknik Mesin, 17(1), 7 16. DOI: 10.24853/sintek.17.1.7-16
  23. Li, Z., Niu, S., Liu, J., & Wang, Y. (2022). Solid fuel production from co-hydrothermal carbonization of polyvinyl chloride and corncob: Higher dechlorination efficiency and process water recycling. Science of The Total Environment, 843, 157082. DOI: 10.1016/j.scitotenv.2022.157082

Last update:

No citation recorded.

Last update:

No citation recorded.