skip to main content

Integration of Heat Exchangers, Compressor, and Steam Reutilization for Energy Efficiency Improvement in Thermal Systems of Dimethyl Ether (DME) Production

1Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia, Indonesia

2Department of Chemical Engineering, Sepuluh Nopember Institute of Technology, Surabaya, Indonesia, Indonesia

Received: 19 Dec 2024; Revised: 20 Dec 2024; Accepted: 26 Dec 2024; Available online: 29 Dec 2024; Published: 30 Dec 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Dimethyl ether (DME) is widely recommended as an environmentally friendly aerosol and green refrigerant due to its low ozone depletion potential and lower global warming potential. Dimethyl ether is produced through the dehydration of methanol which has the potential to be an environmentally friendly alternative fuel. This research addresses the improvement of energy efficiency in dimethyl ether (DME) production through the modification of a heat transfer unit using Aspen HYSYS process simulation software. Dimethyl ether is an environmentally friendly chemical with low global warming potential, which is produced through methanol dehydration. This study focuses on the replacement of heaters and coolers. These modifications successfully improved energy efficiency by reducing net energy consumption from 4.867e+006 kJ/h to 3.268e+005 kJ/h. Despite the decrease in energy efficiency, the conversion rate remained the same at 99.7%.  This research shows that modification of the heat transfer system can support more energy-efficient and sustainable DME production.

Supporting Information (SI) PDF
Keywords: Energy; Dimethyl Ether; Advanced; Heat Transfer; Aspen HYSYS

Article Metrics:

  1. Bakhtyari, A., & Rahimpour, M. R. (2018). Methanol to dimethyl ether. In Methanol (pp. 281-311). Elsevier. DOI: 10.1016/B978-0-444-63903-5.00010-8
  2. Azizi, Z., Rezaeimanesh, M., Tohidian, T., & Rahimpour, M. R. (2014). Dimethyl ether: A review of technologies and production challenges. Chemical Engineering and Processing: Process Intensification, 82, 150-172. DOI: 10.1016/j.cep.2014.06.007
  3. Rafiee, A. (2020). Staging of di-methyl-ether (DME) synthesis reactor from synthesis gas (syngas): Direct versus indirect route. Chemical Engineering Research and Design, 163, 157-168. DOI: 10.1016/j.cherd.2020.08.033
  4. Bahadori, F., & Oshnuie, M. N. (2019). Exergy analysis of indirect dimethyl ether production process. Sustainable Energy Technologies and Assessments, 31, 142-145. DOI: 10.1016/j.seta.2018.12.025
  5. Turton, R., Bailie, R. C., Whiting, W. B., & Shaeiwitz, J. A. (2008). Analysis, synthesis and design of chemical processes. Pearson Education
  6. Cai, Z., Wang, J., Chen, Y., Xia, L., & Xiang, S. (2017). The development of chemical process simulation software according to CAPE-OPEN. Chemical Engineering Transactions, 61, 1819-1824. DOI: 10.3303/CET1761301
  7. Valverde, J. L., Ferro, V. R., & Giroir‐Fendler, A. (2023). Automation in the simulation of processes with Aspen HYSYS: An academic approach. Computer Applications in Engineering Education, 31(2), 376-388. DOI: 10.1002/cae.22589
  8. Moura, C. P., de Araujo Filho, M. A., Villardi, H. G., Cavalcante, R. M., & Young, A. F. (2023). Process simulation and economic evaluation of an integrated production plant for methanol, acetic acid and DME synthesis via sugarcane bagasse gasification. Energy Conversion and Management, 286, 117051. DOI: 10.1016/j.enconman.2023.117051
  9. Polsen, C., Narataruksa, P., Hunpinyo, P., & Prapainainar, C. (2020). Simulation of single-step dimethyl ether synthesis from syngas. Energy reports, 6, 516-520. DOI: 10.1016/j.egyr.2019.11.112
  10. Alshbuki, E. H., Bey, M. M., & Mohamed, A. A. (2020). Simulation production of dimethylether (DME) from dehydration of methanol using aspen hysys. environments, 2, 3. DOI: 10.36348/sijcms.2020.v03i02.002
  11. Maruyama, A., Kurosawa, R., & Ryu, J. (2020). Effect of lithium compound addition on the dehydration and hydration of calcium hydroxide as a chemical heat storage material. ACS omega, 5(17), 9820-9829. DOI: 10.1021/acsomega.9b04444
  12. Moghaddam, A. L., & Hazlett, M. J. (2023). Methanol dehydration catalysts in direct and indirect dimethyl ether (DME) production and the beneficial role of DME in energy supply and environmental pollution. Journal of Environmental Chemical Engineering, 11(3), 110307. DOI: 10.1016/j.jece.2023.110307
  13. Buchori, L., & Anggoro, D. D. (2021). Reaction Kinetics Study of Methanol Dehydration for Dimethyl Ether (DME) Production Using Dealuminated Zeolite Y Catalyst. Chemical Engineering Transactions, 86, 1501-1506. DOI: 10.3303/CET2186251
  14. Peinado, C., Liuzzi, D., Ladera-Gallardo, R. M., Retuerto, M., Ojeda, M., Peña, M. A., & Rojas, S. (2020). Effects of support and reaction pressure for the synthesis of dimethyl ether over heteropolyacid catalysts. Scientific reports, 10(1), 8551. DOI: 10.1038/s41598-020-65296-3
  15. Chmielarz, L. (2024). Dehydration of methanol to dimethyl ether—current state and perspectives. Catalysts, 14(5), 308. DOI: 10.3390/catal14050308
  16. Zhao, A., Pecnik, R., & Peeters, J. W. (2024). Thermodynamic analysis and heat exchanger calculations of transcritical high-temperature heat pumps. Energy Conversion and Management, 303, 118172. DOI: 10.1016/j.enconman.2024.118172
  17. Patel, A. (2023). Heat exchangers in industrial applications: efficiency and optimization strategies. International Journal Of Engineering Research & Technology (Ijert), 12. DOI: 10.17577/IJERTV12IS090003
  18. Bakar, S. A., Hamid, M. K. A., Alwi, S. W., & Manan, Z. A. (2017). A simple case study on application in synthesising a feasible heat exchanger network. Chemical Engineering Transactions, 56, 157-162. DOI: 10.3303/CET1756027
  19. Mannheim, V., Nehéz, K., Brbhan, S., & Bencs, P. (2023). Primary energy resources and environmental impacts of various heating systems based on life cycle assessment. Energies, 16(19), 6995. DOI: 10.3390/en16196995
  20. Faruk, M. O., Ahmed, A., Jalil, M. A., Islam, M. T., Adak, B., Hossain, M. M., & Mukhopadhyay, S. (2021). Functional textiles and composite based wearable thermal devices for Joule heating: progress and perspectives. Applied Materials Today, 23, 101025. DOI: 10.1016/j.apmt.2021.101025
  21. Hagness, D. E., Yang, Y., Tilley, R. D., & Gooding, J. J. (2023). The application of an applied electrical potential to generate electrical fields and forces to enhance affinity biosensors. Biosensors and Bioelectronics, 115577. DOI: 10.1016/j.bios.2023.115577
  22. Herrejón-Escutia, M., Solorio-Díaz, G., Vergara-Hernández, H. J., López-Martínez, E., Chávez-Campos, G. M., & Vázquez-Gómez, O. (2017). Electric-Thermo-Mechanical Analysis of Joule Heating in Dilatometric Specimens. Journal of Mechanical Engineering/Strojniški Vestnik, 63(9). DOI: 10.5545/sv-jme.2017.4320
  23. Sailaja, V., Raju, K. N., & Sailaja, C. A. V. (2019). A Review on Heating and Cooling system using Thermo electric Modules. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), 14(1), 49-57. DOI: 10.9790/1676-1402014957
  24. Hadiningrum, K., & Muldani, R. F. (2018). Optimization of the amount of gas moles determination through Boyle’s law and Gay-Lussac’s law experiments. J. Phys.: Theor. Appl, 2(02), 53-63. DOI: 10.20961/jphystheor-appl.v2i2.30666
  25. Lothenbach, B., & Zajac, M. (2019). Application of thermodynamic modelling to hydrated cements. Cement and Concrete Research, 123, 105779. DOI: 10.1016/j.cemconres.2019.105779
  26. Sharma, B. K., Gandhi, R., Mishra, N. K., & Al-Mdallal, Q. M. (2022). Entropy generation minimization of higher-order endothermic/exothermic chemical reaction with activation energy on MHD mixed convective flow over a stretching surface. Scientific reports, 12(1), 17688. DOI: 10.1038/s41598-022-22521-5
  27. Yaws, C.L. (1999). Chemical Properties Handbook. New York: McGraw Hill Company, Inc
  28. Lima, E. C., Hosseini-Bandegharaei, A., Moreno-Piraján, J. C., & Anastopoulos, I. (2019). A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption. Journal of molecular liquids, 273, 425-434. DOI: 10.1016/j.molliq.2018.10.048

Last update:

No citation recorded.

Last update:

No citation recorded.