skip to main content

Synthesis and Carbonization of Core-Shell ZIF-67@ZIF-90 for Ciprofloxacin and Azithromycin Removal

1Al-Nasiriyah Technical Institute, Southern Technical University, Thi-Qar 64001, Iraq

2Marine Geology Department, Marine Science Center, University of Basrah, Basrah, Iraq

3Department of Physics, College of Education for Pure Science, University of Basrah, Basrah, Iraq

4 Department of Physics, College of Science, University of Kerbala, Karbala, Iraq

View all affiliations
Received: 26 Sep 2025; Revised: 1 Nov 2025; Accepted: 2 Nov 2025; Available online: 12 Nov 2025; Published: 30 Apr 2026.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The elimination of antibiotics such as Azithromycin (AZM) and Ciprofloxacin (CIP) from the contaminated water is crucial to safeguard both human health and environmental quality. This study investigates the synthesis of CoNC@NC core-shell composite by carbonizing ZIF-67@ZIF-90 composite, and the implementation of them in removing antibiotics from aqueous solutions. The composites were characterized using XRD, SEM, FTIR, Raman, TGA, and N2 adsorption-desorption. In the batch adsorption tests, the carbonized composite showed enhanced adsorption capacities compared to the original composite, with maximum adsorption capacities for AZM and CIP being 256.49 mg/g and 514.26 mg/g, respectively. The adsorption process was found to fit the pseudo-first-order kinetics and Langmuir isotherm models. The solution pH showed a significant impact on the adsorption capacity, with maximum capacities recorded at pH of 7 and 6 for the AZM and CIP solutions, respectively. In addition, it was demonstrated that after five regeneration cycles, the carbonized composite maintained the adsorption capacity at over 90% of the first cycle value, suggesting good reusability. These results revealed the potential of using CoNC@NC composites in environmental decontamination and antibiotic removal for wastewater treatment. Copyright © 2026 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Core-Shell ZIF-67@ZIF-90; carbonization; removing Antibiotics; ciprofloxacin; azithromycin
Funding: Southern Technical University

Article Metrics:

  1. Carabineiro, S.A.C., Thavorn-Amornsri, T., Pereira, M.F.R., Figueiredo, J.L., (2011). Adsorption of ciprofloxacin on surface-modified carbon materials. Water Research, 45(15), 4583-4591. DOI: 10.1016/j.watres.2011.06.008
  2. Wada, O.Z., Olawade, D.B., (2025). Recent occurrence of pharmaceuticals in freshwater, emerging treatment technologies, and future considerations: A review. Chemosphere, 374, 144153. DOI: 10.1016/j.chemosphere.2025.144153
  3. Al-Ghazzawi, F., Al-Mossawi, M.M., Allayeith, H.K., (2025). Metal–Porphyrin-Based Covalent Organic Framework Composite Membrane for Salts and Dyes Separation. Compounds, 5(3), 34. DOI: 10.3390/compounds5030034
  4. Rohmatullaili, Ahmad, N., Savira, D., Erviana, D., Zultriana, Mohadi, R., Lesbani, A., (2024). A series of MgAl layer double hydroxide-based materials intercalated with Clitoria ternatea flower extract as photocatalysts in the ciprofloxacin degradation. Chemical Physics Impact, 8, 100587. DOI: 10.1016/j.chphi.2024.100587
  5. Zhang, J., Xiang, S., Wu, P., Wang, D., Lu, S., Wang, S., Gong, F., Wei, X., Ye, X., Ding, P., (2022). Recent advances in performance improvement of Metal-organic Frameworks to remove antibiotics: Mechanism and evaluation. Science of The Total Environment, 811, 152351. DOI: 10.1016/j.scitotenv.2021.152351
  6. Sidhu, H., O'connor, G., Mcavoy, D. (2019). Risk assessment of biosolids-borne ciprofloxacin and azithromycin. Science of The Total Environment, 651, 3151-3160. DOI: 10.1016/j.scitotenv.2018.10.194
  7. Chen, X., Jiang, X., Yin, C., Zhang, B., Zhang, Q., (2019). Facile fabrication of hierarchical porous ZIF-8 for enhanced adsorption of antibiotics. Journal of Hazardous Materials, 367, 194-204. DOI: 10.1016/j.jhazmat.2018.12.080
  8. Huang, A., Yan, M., Lin, J., Xu, L., Gong, H., Gong, H., (2021). A review of processes for removing antibiotics from breeding wastewater. International Journal of Environmental Research and Public Health, 18(9), 4909. DOI: 10.3390/ijerph18094909
  9. Khan, P., Saha, R., Halder, G., (2024). Towards sorptive eradication of pharmaceutical micro-pollutant ciprofloxacin from aquatic environment: A comprehensive review. Science of The Total Environment, 919, 170723. DOI: 10.1016/j.scitotenv.2024.170723
  10. Phoon, B.L., Ong, C.C., Saheed, M.S.M., Show, P.-L., Chang, J.-S., Ling, T.C., Lam, S.S., Juan, J.C., (2020). Conventional and emerging technologies for removal of antibiotics from wastewater. Journal of Hazardous Materials, 400, 122961. DOI: 10.1016/j.jhazmat.2020.122961
  11. Crini, G., Lichtfouse, E., (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145-155. DOI: 10.1007/s10311-018-0785-9
  12. Fang, F., Lv, Q., Li, P., Tao, Y., Zhang, Y., Zhou, Y., Li, X., Li, J., (2022). Screening of hierarchical porous UiO-67 for efficient removal of glyphosate from aqueous solution. Journal of Environmental Chemical Engineering, 10(3), 107824. DOI: 10.1016/j.jece.2022.107824
  13. Al-Ghazzawi, F., Conte, L., Potts, M. W., Richardson, C., and Wagner, P., (2024). Reactive Extrusion Printing of Zeolitic Imidazolate Framework Films. ACS Applied Materials & Interfaces, 16(33), 44270-44277. DOI: 10.1021/acsami.4c08609
  14. Tao, Y., Fang, F., Lv, Q., Qin, W., He, X., Zhang, Y., Zhou, Y., Li, X., Li, J., (2022). Highly efficient removal of glyphosate from water by hierarchical-pore UiO-66: Selectivity and effects of natural water particles. Journal of Environmental Management, 316, 115301. DOI: 10.1016/j.jenvman.2022.115301
  15. Li, J., Lv, Q., Bi, L., Fang, F., Hou, J., Di, G., Wei, J., Wu, X., Li, X., (2023). Metal-organic frameworks as superior adsorbents for pesticide removal from water: The cutting-edge in characterization, tailoring, and application potentials. Coordination Chemistry Reviews, 493, 215303. DOI: 10.1016/j.ccr.2023.215303
  16. Jung, B.K., Jun, J.W., Hasan, Z., Jhung, S.H., (2015). Adsorptive removal of p-arsanilic acid from water using mesoporous zeolitic imidazolate framework-8. Chemical Engineering Journal, 267, 9-15. DOI: 10.1016/j.cej.2014.12.093
  17. Saghir, S., Zhang, S., Wang, Y., Fu, E., Xiao, Z., Zahid, A.H., Pu, C., (2024). Review, recent advancements in zeolitic imidazole frameworks-67 (ZIF-67) and its derivatives for the adsorption of antibiotics. Journal of Environmental Chemical Engineering, 12(4), 113166. DOI: 10.1016/j.jece.2024.113166
  18. Pattengale, B., Yang, S., Ludwig, J., Huang, Z., Zhang, X., Huang, J., (2016). Exceptionally long-lived charge separated state in zeolitic imidazolate framework: implication for photocatalytic applications. Journal of the American Chemical Society, 138(26), 8072-8075. DOI: 10.1021/jacs.6b04615
  19. Liang, C., Zhang, X., Feng, P., Chai, H., Huang, Y., (2018). ZIF-67 derived hollow cobalt sulfide as superior adsorbent for effective adsorption removal of ciprofloxacin antibiotics. Chemical Engineering Journal, 344, 95-104. DOI: 10.1016/j.cej.2018.03.064
  20. Alamgholiloo, H., Hashemzadeh, B., Pesyan, N. N., Sheikhmohammadi, A., Asgari, E., Yeganeh, J., Hashemzadeh, H., (2021). A facile strategy for designing core-shell nanocomposite of ZIF-67/Fe3O4: a novel insight into ciprofloxacin removal from wastewater. Process Safety and Environmental Protection, 147, 392-404. DOI: 10.1016/j.psep.2020.09.061
  21. Dehghan, A., Mohammadi, A.A., Yousefi, M., Najafpoor, A.A., Shams, M., Rezania, S., (2019). Enhanced Kinetic Removal of Ciprofloxacin onto Metal-Organic Frameworks by Sonication, Process Optimization and Metal Leaching Study. Nanomaterials, 9(10), 1422. DOI: 10.3390/nano9101422
  22. Huang, Z., Xiong, C., Ying, L., Wang, W., Wang, S., Ding, J., Lu, J., (2022). Facile synthesis of a MOF-derived magnetic CoAl-LDH@ chitosan composite for Pb(II) and Cr(VI) adsorption. Chemical Engineering Journal, 449, 137722. DOI: 10.1016/j.cej.2022.137722
  23. Yuan, G., Tu, H., Li, M., Liu, J., Zhao, C., Liao, J., Yang, Y., Yang, J., Liu, N., (2019). Glycine derivative-functionalized metal-organic framework (MOF) materials for Co(II) removal from aqueous solution. Applied Surface Science, 466, 903-910. DOI: 10.1016/j.apsusc.2018.10.129
  24. Fan, C., Tang, Y., Wang, H., Huang, Y., Xu, F., Yang, Y., Huang, Y., Rong, W., Lin, Y., (2022). ZIF-90 with biomimetic Zn–N coordination structures as an effective nanozyme to mimic natural hydrolase. Nanoscale, 14(22), 7985-7990. DOI: 10.1039/D2NR01213H
  25. Wei, Z., Liu, Q., Wu, C., Wang, H., Wang, H., (2018). Viscosity-driven in situ self-assembly strategy to fabricate cross-linked ZIF-90/PVA hybrid membranes for ethanol dehydration via pervaporation. Separation and Purification Technology, 201, 256-267. DOI: 10.1016/j.seppur.2018.03.015
  26. Zong, P., Chen, J., Yang, Y., Qiu, Z., Xu, M., Guo, L., Lv, X., Wang, S., (2024). Outstanding performance of core–shell structured chitosan-sodium alginate decorated ZIF-90 beads for the synchronous purification of Pb and Co from industrial effluents. Separation and Purification Technology, 331, 125663. DOI: 10.1016/j.seppur.2023.125663
  27. Luo, J., Luo, X., Gan, Y., Xu, X., Xu, B., Liu, Z., Ding, C., Cui, Y., Sun, C., (2023). Advantages of Bimetallic Organic Frameworks in the Adsorption, Catalysis and Detection for Water Contaminants. Nanomaterials, 13(15), 2194. DOI: 10.3390/nano13152194
  28. Yang, J., Chen, Y., Cao, Y., Liu, W., Zhang, T., Zhou, H., (2024). pH-Responsive Bimetallic MOFs ZIF-8@ZIF-67 for Enhanced Antibacterial Activity. ChemistrySelect, 9(4), e202304908. DOI: 10.1002/slct.202304908
  29. Kayani, K.F., (2024). Bimetallic metal–organic frameworks (BMOFs) for dye removal: a review. RSC Advances, 14(43), 31777-31796. DOI: 10.1039/D4RA06626J
  30. Roshanfekr Rad, L., Faramarzi, H., Anbia, M., Irani, M., (2024). Adsorption of doxorubicin and 5-Fluorouracil anticancer drugs from aqueous media using MIL-101-NH2 (Co/Fe) bi-metal–organic framework. Separation and Purification Technology, 339, 126597. DOI: 10.1016/j.seppur.2024.126597
  31. Wei, F., Wang, K., Li, W., Ren, Q., Qin, L., Yu, M., Liang, Z., Nie, M., Wang, S., (2023). Preparation of Fe/Ni-MOFs for the Adsorption of Ciprofloxacin from Wastewater. Molecules, 28(11), 4411. DOI: 10.3390/molecules28114411
  32. Luo, Q., Liu, P., Bi, L., Shi, L., Zhou, J., Fang, F., Lv, Q., Fu, H., Li, X., Li, J., (2024). Selective and efficient removal of ciprofloxacin from water by bimetallic MOF beads: mechanism quantitative analysis and dynamic adsorption. Separation and Purification Technology, 332, 125832. DOI: 10.1016/j.seppur.2023.125832
  33. Liu, Z., Bahadoran, A., Alizadeh, A.A., Emami, N., Al-Musaw, T.J., Alawadi, A.H.R., Aljeboree, A.M., Shamsborhan, M., Najafipour, I., Mousavi, S.E., et al., (2023). Sonocrystallization of a novel ZIF/zeolite composite adsorbent with high chemical stability for removal of the pharmaceutical pollutant azithromycin from contaminated water. Ultrasonics Sonochemistry, 97, 106463. DOI: 10.1016/j.ultsonch.2023.106463
  34. Ye, Y., Xie, Y., Shi, Y., Gong, L., Phipps, J., Al-Enizi, A. M., Nafady, A., Chen, B., Ma, S., (2023). A Microporous Metal-Organic Framework with Unique Aromatic Pore Surfaces for High Performance C2H6/C2H4 Separation. Angewandte Chemie International Edition, 62(21), e202302564. DOI: 10.1002/anie.202302564
  35. Bergkessel, M., Forte, B., Gilbert, I.H., (2023). Small-Molecule Antibiotic Drug Development: Need and Challenges. ACS Infectious Diseases, 9(11), 2062-2071. DOI: 10.1021/acsinfecdis.3c00189
  36. Liu, B., Shioyama, H., Akita, T., Xu, Q., (2008). Metal-organic framework as a template for porous carbon synthesis. Journal of the American Chemical Society, 130(16), 5390-5391. DOI: 10.1021/ja7106146
  37. Pan, J., Bai, X., Li, Y., Yang, B., Yang, P., Yu, F., Ma, J., (2022). HKUST-1 derived carbon adsorbents for tetracycline removal with excellent adsorption performance. Environmental Research, 205, 112425. DOI: 10.1016/j.envres.2021.112425
  38. Ahmed, I., Bhadra, B.N., Lee, H.J., Jhung, S.H., (2018). Metal-organic framework-derived carbons: Preparation from ZIF-8 and application in the adsorptive removal of sulfamethoxazole from water. Catalysis Today, 301, 90-97. DOI: 10.1016/j.cattod.2017.02.011
  39. Hu, C., Hu, X., Li, R., Xing, Y., (2020). MOF derived ZnO/C nanocomposite with enhanced adsorption capacity and photocatalytic performance under sunlight. Journal of Hazardous Materials, 385, 121599. DOI: 10.1016/j.jhazmat.2019.121599
  40. Sang, X., Chen, J., Jing, M., Shi, G., Ni, C., Wang, D., Jin, W., (2019). Sustainable synthesis of nitrogen-doped porous carbon with improved electrocatalytic performance for hydrogen evolution. New Journal of Chemistry, 43(7), 3078-3083. DOI: 10.1039/C8NJ05819A
  41. Li, K., Yu, L., Cai, J., Zhang, L., (2021). C@TiO2 core-shell adsorbents for efficient rhodamine B adsorption from aqueous solution. Microporous and Mesoporous Materials, 320, 111110. DOI: 10.1016/j.micromeso.2021.111110
  42. Yao, Y., Zhao, X., Chang, G., Yang, X., Chen, B., (2023). Hierarchically Porous Metal–Organic Frameworks: Synthetic Strategies and Applications. Small Structures, 4(1), 2200187. DOI: 10.1002/sstr.202200187
  43. Li, Y., Zeng, C., Wang, C., Zhang, L., (2018). Preparation of C@silica core/shell nanoparticles from ZIF-8 for efficient ciprofloxacin adsorption. Chemical Engineering Journal, 343, 645-653. DOI: 10.1016/j.cej.2018.01.147
  44. Qian, J., Hu, C., Kong, Z., Xu, J., Wang, Y., (2022). Novel Core–Shell‐Structured Zeolitic Imidazolate Framework (ZIF)‐90@ ZIF‐67 Applied for High‐Performance All‐Solid‐State Asymmetric Supercapacitor. Energy Technology, 10(10), 2200652. DOI: 10.1002/ente.202200652
  45. Liu, W., Zhang, Y.Q., Dong, Z.L., Chen, Z.X., Li, L., Zhao, X.Y., Wu, Y., Zhang, Y.Y., (2025). An Efficient Bifunctional Core‐Shell ZIF‐90@ ZIF‐67 Composite as a Stable Pickering Interfacial Catalyst for the Deacetalization–Knoevenagel Tandem Reaction. Chemistry–A European Journal, 31(3), e202403363. DOI: 10.1002/chem.202403363
  46. Mo, D., Wang, Z., Sun, K., Xie, X., Zhang, J., Cai, K., (2020). Core–shell metal–organic frameworks and hierarchical host–guest structures toward water-stable luminescence of lanthanide complexes in encoding beads. Journal of Materials Chemistry C, 8(32), 11110-11118. DOI: 10.1039/D0TC00908C
  47. Marčec, J., Ristić, A., Logar, N.Z., (2024). New Insights into ZIF-90 Synthesis. Molecules, 29(16), 3731. DOI: 10.3390/molecules29163731
  48. Abbasi, Z., Shamsaei, E., Leong, S. K., Ladewig, B., Zhang, X., Wang, H., (2016). Effect of carbonization temperature on adsorption property of ZIF-8 derived nanoporous carbon for water treatment. Microporous and Mesoporous Materials, 236, 28-37. DOI: 10.1016/j.micromeso.2016.08.022
  49. Zhang, J., Yan, X., Hu, X., Feng, R., Zhou, M., (2018). Direct carbonization of Zn/Co zeolitic imidazolate frameworks for efficient adsorption of Rhodamine B. Chemical Engineering Journal, 347, 640-647. DOI: 10.1016/j.cej.2018.04.132
  50. Si, Z., Cai, D., Li, S., Li, G., Wang, Z., Qin, P., (2019). A high-efficiency diffusion process in carbonized ZIF-8 incorporated mixed matrix membrane for n-butanol recovery. Separation and Purification Technology, 221, 286-293. DOI: 10.1016/j.seppur.2019.04.004
  51. Xiong, G., Wang, B.-B., You, L.-X., Ren, B.-Y., He, Y.-K., Ding, F., Dragutan, I., Dragutan, V., Sun, Y.-G., (2019). Hypervalent silicon-based, anionic porous organic polymers with solid microsphere or hollow nanotube morphologies and exceptional capacity for selective adsorption of cationic dyes. Journal of Materials Chemistry A, 7(1), 393-404. DOI: 10.1039/C8TA07109H
  52. Wang, R., Lou, M., Zhang, J., Sun, Z., Li, Z., Wen, P., (2021). Zif-8@ zif-67-derived co embedded into nitrogen-doped carbon nanotube hollow porous carbon supported pt as an efficient electrocatalyst for methanol oxidation. Nanomaterials, 11(10), 2491. DOI: 10.3390/nano11102491
  53. Baghban, A., Ezedin Nejadian, H., Habibzadeh, S., Zokaee Ashtiani, F., (2022). Hydrogenation of pyrolysis gasoline by novel Ni-doped MOF derived catalysts from ZIF-8 and ZIF-67. Scientific Reports, 12(1), 19428. DOI: 10.1038/s41598-022-24071-2
  54. Wang, Y., Wang, K., Zhang, X., Li, J., (2023). Co@ NC@ ZIF-8-hybridized carbon molecular sieve membranes for highly efficient gas separation. Journal of Membrane Science, 682, 121781. DOI: 10.1016/j.memsci.2023.121781
  55. Zhang, P., Sun, F., Xiang, Z., Shen, Z., Yun, J., Cao, D., (2014). ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy & Environmental Science, 7(1), 442-450. DOI: 10.1039/C3EE42799D
  56. Cao, Q., Kang, S., Lu, C., Sun, D., Li, J., Chen, H., Li, X., Zhang, Y., (2025). Preparation and characterization of the octadecylamine-loaded microcapsule through incorporation of ZIF-90-PDA for self-healing and anti-corrosion coatings. Construction and Building Materials, 489, 142171. DOI: 10.1016/j.conbuildmat.2025.142171
  57. Liu, Q., Zhang, H., Zhang, K., Li, J., Cui, J., Shi, T., (2024). Iron–Cobalt Bimetallic Metal–Organic Framework-Derived Carbon Materials Activate PMS to Degrade Tetracycline Hydrochloride in Water. Water, 16(20), 2997. DOI: 10.3390/w16202997
  58. Chen, J.-J., Chen, Y.-T., Senthil Raja, D., Kang, Y.-H., Tseng, P.-C., Lin, C.-H., (2015). Metal-organic frameworks to metal/metal oxide embedded carbon matrix: Synthesis, characterization and gas sorption properties. Materials, 8(8), 5336-5347. DOI: 10.3390/ma8085245
  59. Ren, S., Ju, P., Yu, H., Nan, B., Wang, L., Lian, A., Zang, X., Liang, H., (2024). Preparation of Metal–Organic-Framework-Derived Fe-CN@ CoCN Nanocomposites and Their Microwave Absorption Performance. Coatings, 14(1), 133. DOI: 10.3390/coatings14010133
  60. Wei, Z., Pan, R., Hou, Y., Yang, Y., and Liu, Y., (2015). Graphene-supported Pd catalyst for highly selective hydrogenation of resorcinol to 1, 3-cyclohexanedione through giant π-conjugate interactions. Scientific Reports, 5(1), 15664. DOI: 10.1038/srep15664
  61. Yuan, H., Wu, Y., Pan, X., Gao, L., Xiao, G., (2020). Pyridyl ionic liquid functionalized ZIF-90 for catalytic conversion of CO2 into cyclic carbonates. Catalysis Letters, 150(12), 3561-3571. DOI: 10.1007/s10562-020-03259-z
  62. Liu, C., Yan, B., (2015). Luminescent zinc metal—Organic framework (ZIF-90) for sensing metal ions, anions and small molecules. Photochemical & Photobiological Sciences, 14(9), 1644-1650. DOI: 10.1039/c5pp00107b
  63. Rudzinski, W., Plazinski, W., (2006). Kinetics of solute adsorption at solid/solution interfaces: a theoretical development of the empirical pseudo-first and pseudo-second order kinetic rate equations, based on applying the statistical rate theory of interfacial transport. The Journal of Physical Chemistry B, 110(33), 16514-16525. DOI: 10.1021/jp061779n
  64. Bolster, C.H., Hornberger, G. M., (2007). On the use of linearized Langmuir equations. Soil Science Society of America Journal, 71(6), 1796-1806. DOI: 10.2136/sssaj2006.0304
  65. Feng, J.-B., Li, Y.-Y., Zhang, Y., Xu, Y.-Y., Cheng, X.-W., (2022). Adsorptive removal of indomethacin and diclofenac from water by polypyrrole doped-GO/COF-300 nanocomposites. Chemical Engineering Journal, 429, 132499. DOI: 10.1016/j.cej.2021.132499
  66. Hasan, Z., Choi, E.-J., Jhung, S.H., (2013). Adsorption of naproxen and clofibric acid over a metal–organic framework MIL-101 functionalized with acidic and basic groups. Chemical Engineering Journal, 219, 537-544. DOI: 10.1016/j.cej.2013.01.002
  67. Upoma, B.P., Yasmin, S., Ali Shaikh, M.A., Jahan, T., Haque, M.A., Moniruzzaman, M., Kabir, M.H., (2022). A Fast Adsorption of Azithromycin on Waste-Product-Derived Graphene Oxide Induced by H-Bonding and Electrostatic Interactions. ACS Omega, 7(34), 29655-29665. DOI: 10.1021/acsomega.2c01919
  68. Hasan, Z., Khan, N.A., Jhung, S.H., (2016). Adsorptive removal of diclofenac sodium from water with Zr-based metal–organic frameworks. Chemical Engineering Journal, 284, 1406-1413. DOI: 10.1016/j.cej.2015.08.087
  69. Zhao, X., Zheng, M., Gao, X., Zhang, J., Wang, E., Gao, Z., (2021). The application of MOFs-based materials for antibacterials adsorption. Coordination Chemistry Reviews, 440, 213970. DOI: 10.1016/j.ccr.2021.213970
  70. Pouretedal, H.R., (2014). Preparation and characterization of azithromycin nanodrug using solvent/antisolvent method. International Nano Letters, 4(1), 103. DOI: 10.1007/s40089-014-0103-x
  71. Zhao, R., Ma, T., Zhao, S., Rong, H., Tian, Y., Zhu, G., (2020). Uniform and stable immobilization of metal-organic frameworks into chitosan matrix for enhanced tetracycline removal from water. Chemical Engineering Journal, 382, 122893. DOI: 10.1016/j.cej.2019.122893
  72. Patil, M., Singh, S., Kumari, D., Daverey, A., Dutta, K., (2024). Adsorption of azithromycin antibiotic from water onto biochar derived from Terminalia chebula and sugarcane bagasse. Water Practice and Technology, 19(8), 2973-2990. DOI: 10.2166/wpt.2024.140
  73. Li, B., Zhang, Y., Xu, J., Fan, S., Xu, H., (2022). Facile preparation of magnetic porous biochars from tea waste for the removal of tetracycline from aqueous solutions: Effect of pyrolysis temperature. Chemosphere, 291, 132713. DOI: 10.1016/j.chemosphere.2021.132713
  74. Bhattacharyya, P., Sarma, L., Taneja, A., Parmar, P.R., Jain, G., Bandyopadhyay, D., Chakrabarti, S., (2023). MOF‐heterostructure‐mediated pH‐responsive adsorptive removal of ciprofloxacin: a step towards pharmaceutical wastewater treatment. ChemNanoMat, 9(4), e202200518. DOI: 10.1002/cnma.202200518
  75. Ashrafi, M., Farhadi, S., (2023). Polyoxometalate supported on a magnetic Fe3O4/MIL-88A rod-like nanocomposite as an adsorbent for the removal of ciprofloxacin, tetracycline and cationic organic dyes from aqueous solutions. RSC Advances, 13(10), 6356-6367. DOI: 10.1039/d2ra07898h
  76. Tran, T.K.N., Tran, A.C., Tran, T.T.N., Le, T.H.N., Lam, V.T., (2023). Optimization of ciprofloxacin adsorption onto CoFe-MOF aerogel cylinders based on response surface methodology: adsorption kinetics, isotherm models. Materials Science and Engineering: B, 297, 116694. DOI: 10.1016/j.mseb.2023.116694

Last update:

No citation recorded.

Last update:

No citation recorded.