skip to main content

Nickel-Lanthanum Impregnated into Natural Zeolite as a Catalyst for Biofuel Production from Sunflower Oil via Hydrocracking Process

1Research Center for Catalysis, National Research and Innovation Agency, South Tangerang, Indonesia

2Department of Chemical Engineering, University of Muhammadiyah Jakarta, Central Jakarta, Indonesia

3Department of Mechanical Engineering, State University of Jakarta, East Jakarta, Indonesia

4 Department of Industrial Chemistry, Faculty of Science and Technology, University of Jambi, Jambi, Indonesia

5 Research Center for Mining Technology, National Research and Innovation Agency (BRIN-Indonesia), South Lampung 35361, Indonesia

6 Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, Surabaya 60111, Indonesia

7 Department of Chemistry, Jambi State Senior High School 3, Jambi, 36124, Indonesia

View all affiliations
Received: 1 Oct 2025; Revised: 30 Nov 2025; Accepted: 1 Dec 2025; Available online: 29 Dec 2025; Published: 30 Apr 2026.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2026 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The increasing demand for crude oil or fossil fuel as a raw material for oil fuel has been steadily rising over time in line with the development that is taking place in Indonesia. However, biofuels are potential vegetable fuels that can be developed as alternative energy because they are renewable and can be renewed to overcome the energy crisis in the future. For this purpose, a double metal catalyst (impregnated with nickel and lanthanum), is used to make biofuels from sunflower seed oil. The effect of metal ratio on the yield of biofuel products is the concern in this study. The temperature of hydrocracking process was 250-330 ℃ with ratio of metal 5% and 10% (metal ratio 1:1 and 1:2). X-ray diffraction (XRD) shows that natural zeolite has a clinoptilolite phase, X-Ray Fluorescence (XRF) shows that acid and base activation increases the Si/Al ratio from 4.5 to 5, Scanning Electron Microscope – Energy Dispersive X-Ray (SEM-EDX) shows images of natural zeolite surfaces in the form of aggregate pieces, and Brunauer Emmett Teller (BET) shows that acid and base activation increases SBET from 29.96 to 49.73 m2/g and forms a hierarchical natural zeolite. The impregnation of Ni-La/Zeolite catalyst has been successfully carried out using the incipient wetness impregnation method and the best catalyst results were obtained, namely Ni-La/Zeolite 10% (1:2) with a surface area of 15.33 m2/gS. The addition of Nickel and Lanthanum metals caused a decrease in the surface area and average pore diameter of the zeolite. The lowest surface area and average pore diameter were found in the variation of the Ni-La/Zeolite 10% (1:2) catalyst, namely 15.33 m2/g and 13.99 nm. The highest hydrocarbon yield was found in the hydrocracking process with the Ni-La/Zeolite 10% (1:1) catalyst with gasoline, kerosene and gasoil fractions of 0.91; 0.39 and 8.32 (%wt), respectively. The hydrocarbon compound composition of the catalyst includes n-paraffin 4.43%, isoparaffin 0.21%, cycloparaffin 2.99% and olefin 2.71%. Copyright © 2026 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Nickel-Lanthanum; Natural zeolite; Sunflower oil; Hydrocracking; Green Diesel
Funding: LPDP (Indonesia Endowment Fund for Education Agency) under contract B-844/II.7/FR.06/5/2023 ; National Research and Innovation Agency (BRIN-Indonesia) under contract B948/III.10/FR.06/5/2023

Article Metrics:

  1. Oloruntobi, O., Mokhtar, K., Himawan, A.F.I., Gohari, A., Onigbara, V., Rozar, N., Balasudarsun, N.L. (2025). Economic and environmental assessment of fatty-acid-methyl-ester and hydrotreated vegetable oil biofuels viability for future marine engines. Bioresource Technology Reports, 30(May), 102146. DOI: 10.1016/j.biteb.2025.102146
  2. Panchal, B., Su, C.-H., Fu, C.-C., Wu, S.-J., Juan, H.-Y. (2025). A review of municipal sewage sludge biological material applications in biofuel and environmental pollution control and future opportunities. Journal of Environmental Chemical Engineering, 13(5), 118223. DOI: 10.1016/j.jece.2025.118223
  3. Lamnatou, C., Cristofari, C., Chemisana, D. (2024). Renewable energy sources as a catalyst for energy transition: Technological innovations and an example of the energy transition in France. Renewable Energy, 221, 119600. DOI: 10.1016/j.renene.2023.119600
  4. Sikiru, S., Abioye, K.J., Adedayo, H.B., Adebukola, S.Y., Soleimani, H., Anar, M. (2024). Technology projection in biofuel production using agricultural waste materials as a source of energy sustainability: A comprehensive review. Renewable and Sustainable Energy Reviews, 200(September 2023), 114535. DOI: 10.1016/j.rser.2024.114535
  5. Akhtar Usmani, R., Khan, A.A. (2025). Regional outlooks of biomass potential for transport sector energy security. Renewable Energy, 242(January), 122356. DOI: 10.1016/j.renene.2025.122356
  6. Emmanouilidou, E., Lazaridou, A., Mitkidou, S., Kokkinos, N.C. (2024). A comparative study on biodiesel production from edible and non-edible biomasses. Journal of Molecular Structure, 1306(January), 137870. DOI: 10.1016/j.molstruc.2024.137870
  7. Periyasamy, S., Asefa Adego, A., Kumar, P.S., Desta, G.G., Zelalem, T., Karthik, V., Isabel, J.B., Jayakumar, M., Sundramurthy, V.P., Rangasamy, G. (2024). Influencing factors and environmental feasibility analysis of agricultural waste preprocessing routes towards biofuel production – A review. Biomass and Bioenergy, 180(August 2023), 107001. DOI: 10.1016/j.biombioe.2023.107001
  8. Gopalakrishnan, N.K., Balasubramanian, B., Meyyazhagan, A., Chaudhary, A., Palani, V., Kamyab, H., Pappuswamy, M. (2025). Exploring the efficiency and scalability of using algae as a biomass feedstock for biofuel production. Algal Research, 90(August), 104251. DOI: 10.1016/j.algal.2025.104251
  9. Estevez, R., López-Tenllado, F.J., Montes, V., Romero, A.A., Bautista, F.M., Luna, D. (2024). Characterization of Several 2-Ethylhexyl Nitrates with Vegetable Oil (Castor or Sunflower Oil) Blends in Triple Blends with Diesel, Working as Advanced Biofuels in C.I. Diesel Engines. Applied Sciences (Switzerland), 14(24) DOI: 10.3390/app142411968
  10. Al-Abbasi, A., Almahdi, F., Almaky, M., Izriq, R., Milad, A., Salim, S., Najar, A. (2023). BaO as a heterogeneous nanoparticle catalyst in oil transesterification for the production of FAME fuel. Inorganic Chemistry Communications, 158(P2), 111620. DOI: 10.1016/j.inoche.2023.111620
  11. Zou, Q., He, H., Xie, J., Han, S., Lin, W., Mondal, A.K., Huang, F. (2023). Study on the mechanism of acid modified H-Beta zeolite acidic sites on the catalytic pyrolysis of Kraft lignin. Chemical Engineering Journal, 462(February), 142029. DOI: 10.1016/j.cej.2023.142029
  12. Al Muttaqii, M., Marbun, M.P., Priyanto, S., Sibuea, A., Simanjuntak, W., Fuad Syafaat, A.M., Raja, H.S.H.S., Alviany, R., Maryani, T., Sulistyaningsih, T., Prasetyo, E., Sudibyo, S., Yati, I. (2024). Lampung Natural Zeolite Dopped with of ZnO-TiO2 Metal Oxide as Catalyst for Biodiesel Production. Bulletin of Chemical Reaction Engineering & Catalysis, 19(1), 61–68. DOI: 10.9767/bcrec.20038
  13. Intang, A., Susmanto, P., Djoni, M., Haryati, S. (2024). South African Journal of Chemical Engineering Determination of swelling operation parameters to improve the hierarchy of natural zeolite Lampung after synthesis. South African Journal of Chemical Engineering, 50(August), 125–134. DOI: 10.1016/j.sajce.2024.08.004
  14. Aziz, A., Andini Putri, B.G., Prasetyoko, D., Nugraha, R.E., Holilah, H., Bahruji, H., Jalil, A.A., Suprapto, S., Hartati, H., Asikin-Mijan, N. (2023). Synthesis of mesoporous zeolite Y using Sapindus rarak extract as natural organic surfactant for deoxygenation of Reutealis trisperma oil to biofuel. RSC Advances, 13(46), 32648–32659. DOI: 10.1039/d3ra05390c
  15. Kurniawan, A.A., Rustyawan, W., Ibadurrohman, M. (2025). Performance Test of Various Indonesian Natural Zeolites as Composite Components of NiMo/Al2O3 -Zeolite Catalysts for Hydrocracking Used Cooking Oil into Biohydrocarbons. Bulletin of Chemical Reaction Engineering & Catalysis. 20(1), 99–108. DOI: 10.9767/bcrec.20254
  16. Sihombing, J.L., Gea, S., Wirjosentono, B., Agusnar, H., Pulungan, A.N., Herlinawati, H., Yusuf, M. Characteristic and Catalytic Performance of Co and Co-Mo Metal Impregnated in Sarulla Natural Zeolite Catalyst for Hydrocracking of MEFA Rubber Seed Oil into Biogasoline Fraction. Catalysts, 10(1), 121. DOI: 10.3390/catal10010121
  17. Trisunaryanti, W., Iip, T., Falah, I., Widyawati, D., Yusniyanti, F. (2024). The effect of oxalic acid and NaOH treatments on the character of Wonosari natural zeolite as Ni , Cu , and Zn metal support catalyst for hydrocracking of castor oil. Biomass Conversion and Biorefinery, 5637–5649. DOI: 10.1007/s13399-022-02779-5
  18. Energy Tech - 2024 - Sihombing - Hydrocracking Rubber Seeds Oil for Biofuel Production Using Bifunctional Sarulla‐Derived.pdf
  19. He, J., Lin, L., Liu, M., Miao, C., Wu, Z., Chen, R., Chen, S., Chen, T., Su, Y., Zhang, T., Luo, W. (2022). A durable Ni/La-Y catalyst for efficient hydrogenation of γ-valerolactone into pentanoic biofuels. Journal of Energy Chemistry, 70, 347–355. DOI: 10.1016/j.jechem.2022.02.011
  20. Istadi, I., Amalia, R., Riyanto, T., Anggoro, D.D., Jongsomjit, B., Bawono, A. (2022). Acids treatment for improving catalytic properties and activity of the spent RFCC catalyst for cracking of palm oil to kerosene-diesel fraction fuels. Molecular Catalysis, 527(December 2021), 112420. DOI: 10.1016/j.mcat.2022.112420
  21. Allwar, A., Maulina, R., Julianto, T.S., Widyaningtyas, A.A. (2022). Hydrocracking of Crude Palm Oil over Bimetallic Oxide NiO-CdO / biochar Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis. 17(2), 476–485. DOI: 10.9767/bcrec.17.2.14074.476-485
  22. Hasanudin, H., Asri, W.R., Mara, A., Al Muttaqii, M., Maryana, R., Rinaldi, N., Sagadevan, S., Zhang, Q., Fanani, Z., Hadiah, F. (2023). Enhancement of Catalytic Activity on Crude Palm Oil Hydrocracking over SiO2/Zr Assisted with Potassium Hydrogen Phthalate. ACS Omega, 8(23), 20858–20868. DOI: 10.1021/acsomega.3c01569
  23. Marlinda, L., Prajitno, D.H., Roesyadi, A., Gunardi, I., Mirzayanti, Y.W., Al Muttaqii, M., Budianto, A. (2022). Biofuel from hydrocracking of Cerbera manghas oil over Ni-Zn/HZSM-5 catalyst. Ecletica Quimica, 47(1), 17–39. DOI: 10.26850/1678-4618eqj.v47.1.2022.p17-39
  24. Trisunaryanti, W., Triyono, T., Fallah, I.I., Salsiah, S., Alisha, G.D. (2022). Highly Selective Bio-hydrocarbon Production using Sidoarjo Mud Based-Catalysts in the Hydrocracking of Waste Palm Cooking Oil. Bulletin of Chemical Reaction Engineering & Catalysis. 17(4), 712–724. DOI: 10.9767/bcrec.17.4.15472.712-724
  25. Han, Y., Larmier, K., Rivallan, M., Pirngruber, G.D. (2024). Generation of mesoporosity in H–Y zeolites by basic or acid/basic treatments: Towards a guideline of optimal Si/Al ratio and basic reagent. Microporous and Mesoporous Materials, 365(September 2023), 112906. DOI: 10.1016/j.micromeso.2023.112906
  26. Muttaqii, M. Al, Annas, D., Yati, I., Kurniawan, H.H., Ndruru, S.T.C.L., Priyanto, S., Sudibyo, Aziz, A., Prasetyoko, D., Nugraha, R.E., Marlinda, L. (2025). Molybdenum-lanthanum supported on nano-HZSM-5 as catalyst for hydroprocessing of Cerbera manghas oil. Inorganic Chemistry Communications, 173(December 2024), 113855. DOI: 10.1016/j.inoche.2024.113855
  27. Zheng, T., Liu, H., He, P., Zhang, R., Meng, X., Xu, C., Liu, H., Yue, Y., Liu, Z. (2022). Post synthesis of hierarchical SAPO-34 via citric acid etching: Mechanism of selective desilication. Microporous and Mesoporous Materials, 335(December 2021), 111798. DOI: 10.1016/j.micromeso.2022.111798
  28. Cha, Y.H., Mun, S., Lee, K.B. (2023). Development of modified zeolite for adsorption of mixed sulfur compounds in natural gas by combination of ion exchange and impregnation. Applied Surface Science, 619(December 2022), 156634. DOI: 10.1016/j.apsusc.2023.156634
  29. Sihombing, J.L., Herlinawati, H., Pulungan, A.N., Simatupang, L., Rahayu, R., Wibowo, A.A. (2023). Effective hydrodeoxygenation bio-oil via natural zeolite supported transition metal oxide catalyst. Arabian Journal of Chemistry, 16(6), 104707. DOI: 10.1016/j.arabjc.2023.104707
  30. Kıpçak, İ., Kalpazan, E. (2024). Efficient and Stable Co-B Catalyst Supported on Natural Zeolite for Hydrogen Generation from Hydrolysis of Alkaline NaBH4 Solution. Catalysis Letters, 154(9), 5006–5021. DOI: 10.1007/s10562-024-04702-1
  31. Aziz, A., Nugraha, R.E., Holilah, H., Bahruji, H., Al Muttaqii, M., Suprapto, S., Prasetyoko, D. (2024). Hydrothermal study of synthesis mesoporous NaP zeolite using Sapindus rarak extract as natural surfactant. Inorganic Chemistry Communications, 165(January), 112497. DOI: 10.1016/j.inoche.2024.112497
  32. Jankowska, A., Ostrowski, A., Janiszewska, E., Tabero, A., Kowalak, S. (2023). Proton conductivity of the azole composites based on BEA zeolites with different pore systems. International Journal of Hydrogen Energy, 48(76), 29724–29737. DOI: 10.1016/j.ijhydene.2023.04.046
  33. Adany, F., Priyanto, S., Mirzayanti, Y.W., Marbun, M.P., Zainul Furqon, M.I., Amin, A.K., Hasanudin, H., Aziz, A., Nugraha, R.E., Sudibyo, S., Constan Lotebulo Ndruru, S.T., Annas, D., Yati, I., Sulaswatty, A., Khoiru Wihadi, M.N., Wahyu N Nugroho, R., Al Muttaqii, M. (2025). γ- Al2O3-supported Cobalt and Zinc as heterogeneous catalyst for biodiesel production assisted by ultrasonic wave. Vacuum, 240(May), 114502. DOI: 10.1016/j.vacuum.2025.114502
  34. Huang, C.J., Xu, H.M., Shuai, T.Y., Zhan, Q.N., Zhang, Z.J., Li, G.R. (2023). A review of modulation strategies for improving catalytic performance of transition metal phosphides for oxygen evolution reaction. Applied Catalysis B: Environmental, 325(December 2022), 122313. DOI: 10.1016/j.apcatb.2022.122313
  35. Capunitan, J.A., Capareda, S.C. (2012). Assessing the potential for biofuel production of corn stover pyrolysis using a pressurized batch reactor. Fuel, 95, 563–572. DOI: 10.1016/j.fuel.2011.12.029
  36. El-Araby, R., Ibrahim, M.A., Abdelkader, E., Ismail, E.H. (2022). (Co/Zn) Al2O4 nano catalyst for waste cooking oil catalytic cracking. Scientific Reports, 12(1), 1–13. DOI: 10.1038/s41598-022-10596-z
  37. Marlinda, L., Rahmi, Aziz, A., Roesyadi, A., Prajitno, D.H., Mirzayanti, Y.W., Muttaqii, M. Al (2025). Cobalt-nickel supported on desilicated HZSM-5 for the conversion of Reutealis trisperma (blanco) airy shaw oil to liquid hydrocarbon products. Communications in Science and Technology, 10(1), 87–97. DOI: 10.21924/cst.10.1.2025.1570
  38. Attaphaiboon, W., Neramittagapong, S., Theerakulpisut, S., Neramittagapong, A. (2021). Potential of Vegetable Oils for Producing Green Diesel Via Hydrocracking Process. Thai Environmental Engineering Journal, 35(2), 1–11
  39. Hasanudin, H., Asri, W.R., Zulaikha, I.S., Ayu, C., Rachmat, A., Riyanti, F., Hadiah, F., Zainul, R., Maryana, R. (2022). Hydrocracking of crude palm oil to a biofuel using zirconium nitride and zirconium phosphide-modified bentonite. RSC Advances, 12(34), 21916–21925. DOI: 10.1039/d2ra03941a
  40. Cavalheiro, L.F., Rial, R.C., de Freitas, O.N., Domingues Nazário, C.E., Viana, L.H. (2021). Thermal cracking of fodder radish (Raphanus sativus L.) oil to use as biofuel. Journal of Analytical and Applied Pyrolysis, 157(April) DOI: 10.1016/j.jaap.2021.105223
  41. Al-Muttaqii, M., Kurniawansyah, F., Prajitno, D.H., Roesyadi, A. (2019). Hydrocracking of coconut oil over Ni-Fe/HZSM-5 catalyst to produce hydrocarbon biofuel. Indonesian Journal of Chemistry, 19(2), 319–327. DOI: 10.22146/ijc.33590
  42. Zhao, X., Wei, L., Cheng, S., Julson, J., Anderson, G., Muthukumarappan, K., Qiu, C. (2016). Development of hydrocarbon biofuel from sunflower seed and sunflower meat oils over ZSM-5. Journal of Renewable and Sustainable Energy, 8(1) DOI: 10.1063/1.4941911
  43. Le-Phuc, N., Tran, T. V., Phan, T.T., Ngo, P.T., Ha, Q.L.M., Luong, T.N., Tran, T.H., Phan, T.T. (2021). High-efficient production of biofuels using spent fluid catalytic cracking (FCC) catalysts and high acid value waste cooking oils. Renewable Energy, 168, 57–63. DOI: 10.1016/j.renene.2020.12.050
  44. Ozcan, M.C., Degirmencioglu, P., Karaman, E.E.B.P., Murtezaoglu, K., Oktar, N. (2024). Effect of the Amount and Type of Active Metal and Its Impregnation Sequence on Bio-Fuel Production. Applied Catalysis A: General, 683(April), 119850. DOI: 10.1016/j.apcata.2024.119850
  45. Edra, R., Prasetyoko, D., Argya, N., Aziz, A., Holilah, H., Bahruji, H., Rahimi, M., Asikin-mijan, N., Suprapto, S., Taufiq-yap, Y.H., Abdul, A., Wulan, S. (2024). Case Studies in Chemical and Environmental Engineering Jet-fuel range hydrocarbon production from Reutealis trisperma oil over Al-MCM-41 derived from Indonesian Kaolin with different Si / Al ratio. Case Studies in Chemical and Environmental Engineering, 10(August), 100877. DOI: 10.1016/j.cscee.2024.100877
  46. Nugraha, R.E., Prasetyoko, D., Nareswari, N.A., Aziz, A., Holilah, H., Bahruji, H., Yusop, M.R., Asikin-Mijan, N., Suprapto, S., Taufiq-Yap, Y.H., Jalil, A.A., Purnami, S.W., Hartati, H. (2024). Jet-fuel range hydrocarbon production from Reutealis trisperma oil over Al-MCM-41 derived from Indonesian Kaolin with different Si/Al ratio. Case Studies in Chemical and Environmental Engineering, 10(August), 100877. DOI: 10.1016/j.cscee.2024.100877

Last update:

No citation recorded.

Last update:

No citation recorded.