skip to main content

Cold Plasma Modeling for Air Pollution Control: NOx Removal in Dielectric Barrier Discharge Reactors

Laboratory of Electrical Engineering and Renewable Energy (LGEER), Electrical Engineering Department, Faculty of Technology, Hassiba Benbouali University of Chlef, Algeria

Received: 9 Dec 2025; Revised: 6 Jan 2026; Accepted: 7 Jan 2026; Available online: 15 Jan 2026; Published: 30 Apr 2026.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2026 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The paper presents a comprehensive numerical investigation of dielectric barrier discharges (DBDs) operating in atmospheric pressure air (N₂–O₂–Ar) containing NO concentrations between 2.5% and 10% is presented for plasma assisted NOₓ mitigation. A one-dimensional fluid model is developed to describe the discharge dynamics and plasma chemical interactions under applied voltages of 8–12 kV and excitation frequencies of 2–4 kHz. The influence of voltage amplitude and frequency on electrical characteristics and NOₓ removal efficiency is systematically analyzed. A representative operating condition (10% NO, 10 kV, 3 kHz) is examined in detail to elucidate the temporal evolution of voltage and current and the spatial distributions of electrons, ions, excited species, and neutral particles involved in NO dissociation pathways. The results provide improved insight into the reaction kinetics governing NO degradation in air plasma and offer practical guidance for optimizing DBD-based environmental remediation systems. Copyright © 2026 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Cold Plasma; Atmospheric Pressure; Nitrogen Oxides Reduction; Dielectric Barrier Discharge; Fluid Model.
Funding: Hassiba Benbouali University of Chlef

Article Metrics:

  1. Fayyazbakhsh, A., Bell, M.L., Zhu, X., Mei, X., Koutný, M., Hajinajaf, N., Zhang, Y. (2022). Engine emissions with air pollutants and greenhouse gases and their control technologies. Journal of Cleaner Production, 376, 134260. DOI: 10.1016/j.jclepro.2022.134260
  2. Bruggeman, P.J., Iza, F., Brandenburg, R. (2017). Foundations of atmospheric pressure non-equilibrium plasmas. Plasma Sources Science and Technology, 26(12), 123002. DOI; 10.1088/1361-6595/aa97af
  3. Talebizadeh, P., Babaie, M., Brown, R., Rahimzadeh, H., Ristovski, Z., Arai, M. (2014). The role of non-thermal plasma technique in NOx treatment: A review. Renewable and Sustainable Energy Reviews, 40, 886-901. DOI: 10.1016/j.rser.2014.07.194
  4. Skalska, K., Miller, J.S., Ledakowicz, S. (2010). Trends in NOx abatement: A review. Science of the Total Environment, 408(19), 3976-3989. DOI: 10.1016/j.scitotenv.2010.06.001
  5. Babaie, M., Davari, P., Talebizadeh, P., Ristovski, Z., Rahimzadeh, H., Brown, R. (2013). Study of particulate matter removal mechanism by using non-thermal plasma technology. In Proceedings of the XIII International Conference on Electrostatic Precipitation (pp. 1-7). International Society for Electrostatic Precipitation (ISESP). https://eprints.qut.edu.au/60837/
  6. Ghomi, H., Safa, N.N., Ghasemi, S. (2011). Investigation on a DBD plasma reactor. IEEE Transactions on Plasma Science, 39(11), 2104-2105. DOI: 10.1109/tps.2011.2160735
  7. Fang, Z., Lin, J., Yang, H., Qiu, Y., Kuffel, E. (2009). Polyethylene terephthalate surface modification by filamentary and homogeneous dielectric barrier discharges in air. IEEE Transactions on Plasma Science, 37(5), 659-667. DOI: 10.1109/TPS.2009.2015322
  8. Lahouel, M.H., Benyoucef, D., tebani, H. (2021). Modeling and parametric study of dielectric barrier discharge in pure nitrogen at atmospheric pressure. Turkish Journal of Physics, 45(1), 26-42. DOI: 10.3906/fiz-2003-5
  9. Jolibois, J., Takashima, K., Mizuno, A. (2012). Application of a non-thermal surface plasma discharge in wet condition for gas exhaust treatment: NOx removal. Journal of Electrostatics, 70(3), 300-308. DOI: 10.1016/j.elstat.2012.03.011
  10. Mohapatro, S., Rajanikanth, B.S. (2011). Study of pulsed plasma in a crossed flow dielectric barrier discharge reactor for improvement of NOx removal in raw diesel engine exhaust. Plasma Science and Technology, 13(1), 82. DOI: 10.1088/1009-0630/13/1/17
  11. Matsumoto, T., Wang, D., Namihira, T., Akiyama, H. (2010). Energy efficiency improvement of nitric oxide treatment using nanosecond pulsed discharge. IEEE Transactions on Plasma Science, 38(10), 2639-2643. DOI: 10.1109/TPS.2010.2045903
  12. Anaghizi, S.J., Talebizadeh, P., Rahimzadeh, H., Ghomi, H. (2015). The configuration effects of electrode on the performance of dielectric barrier discharge reactor for NOx removal. IEEE Transactions on Plasma Science, 43(6), 1944-1953. DOI: 10.1109/TPS.2015.2422779
  13. Cai, Y., Lu, L., Li, P. (2020). Study on the effect of structure parameters on NO oxidation in DBD reactor under oxygen-enriched condition. Applied Sciences, 10(19), 6766. DOI: 10.3390/app10196766
  14. Qiao, J.J., Yang, Q., Wang, L.C., Albrechts, M.C.K., Tsonev, I., Bogaerts, A., Xiong, Q. (2025). Kinetics of N2 vibrational excitation and NO formation in nanosecond-pulsed air discharge: Can vibrational-translational nonequilibrium be exploited for efficient N2 fixation, Plasma Sources Science and Technology. 34 065008. DOI: 10.1088/1361-6595/ade33c
  15. Paulauskas, R., Jõgi, I., Striūgas, N., Martuzevičius, D., Erme, K., Raud, J., Tichonovas, M. (2019). Application of non-thermal plasma for NOx reduction in the flue gases. Energies, 12(20), 3955
  16. DOI: 10.3390/en12203955
  17. Silva, T., Bera, S., Pintassilgo, C.D., Herrmann, A., Welzel, S., Tsampas, M.N., ... Guerra, V. (2024). Unraveling NO Production in N2–O2 Plasmas with 0D Kinetic Modeling and Experimental Validation. The Journal of Physical Chemistry A, 128(34), 7235-7256. DOI: 10.1021/acs.jpca.4c03323
  18. Okubo, M., Yamada, H., Yoshida, K., Kuroki, T. (2017). Simultaneous reduction of diesel particulate and NOx using a catalysis-combined nonthermal plasma reactor. IEEE Transactions on Industry Applications, 53(6), 5875-5882. DOI: 10.1109/TIA.2017.2748925
  19. Amine, N.Y.M., Mohamed, M., Djilali, B. (2025). Investigation of Ar/CH₄ Mixtures in Dielectric Barrier Discharge: A Simulation Approach for Hydrogen Production. Bulletin of Chemical Reaction Engineering & Catalysis, 20(3), 458-470. DOI: 10.9767/bcrec.20352
  20. Chenoui, M., Tebani, H., Benyoucef, D. (2026). Modeling and Electrical Characterization of CO₂/Ar Dielectric Barrier Discharges at Atmospheric Pressure. Bulletin of Chemical Reaction Engineering & Catalysis, 21(1), 38-50. DOI: 10.9767/bcrec.20493
  21. Parent, B., Rodriguez Fuentes, F.M. (2024). Progress in electron energy modeling for plasma flows and discharges. Physics of Fluids, 36(8). DOI: 10.1063/5.0219552
  22. Carbone, E., Graef, W., Hagelaar, G., Boer, D., Hopkins, M. M., Stephens, J. C., ... Pitchford, L. (2021). Data needs for modeling low-temperature non-equilibrium plasmas: the LXCat project, history, perspectives and a tutorial. Atoms, 9(1), 16. DOI: 10.3390/atoms9010016
  23. Lahouel, M.H.A., Benyoucef, D., Gadoum, A. (2023). One Dimensional Modeling of Dielectric Barrier Discharge in Pure Oxygen at Atmospheric Pressure Using Comsol Multiphysics. ArXiv Preprint, arXiv:2302.13813. DOI: 10.48550/arXiv.2302.13813
  24. Cheng, K.W., Hung, C.T., Lin, K.M., Chiu, Y.M., Wu, J.S., Yu, J.P. (2012). Fluid modeling of a nitrogen atmospheric-pressure planar dielectric barrier discharge driven by a realistic distorted sinusoidal alternating current power source. Japanese Journal of Applied Physics, 51(11R), 116001. DOI: 10.1143/JJAP.51.116001
  25. Massines, F., Segur, P., Gherardi, N., Khamphan, C., Ricard, A. (2003). Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure: diagnostics and modelling. Surface and Coatings Technology, 174, 8-14. DOI: 10.1016/S0257-8972(03)00540-1
  26. Triniti Database, www.lxcat.net, retrieved on May 4, 2025
  27. Bacri, J., Medani, A. (1980). Electron diatomic molecule weighted total cross section calculation. Physica B+C, 101(3), 399-409. DOI: 10.1016/0378-4363(80)90037-6
  28. Lazarou, C., Koukounis, D., Chiper, A.S., Costin, C., Topala, I., Georghiou, G.E. (2015). Numerical modeling of the effect of the level of nitrogen impurities in a helium parallel plate dielectric barrier discharge. Plasma Sources Science and Technology, 24(3), 035012. DOI: 10.1088/0963-0252/24/3/035012
  29. Tsai, I.H., Hsu, C.C. (2010). Numerical simulation of downstream kinetics of an atmospheric-pressure nitrogen plasma jet. IEEE Transactions on Plasma Science, 38(12), 3387-3392. DOI: 10.1109/TPS.2010.2084598
  30. Choi, Y.H., Kim, J.H., Hwang, Y.S. (2006). One-dimensional discharge simulation of nitrogen DBD atmospheric pressure plasma. Thin Solid Films, 506, 389-395. DOI: 10.1016/j.tsf.2005.08.103
  31. Phelps Database, www.lxcat.net, retrieved on May 4, 2025
  32. Kossyi, I.A., Kostinsky, A.Y., Matveyev, A.A., Silakov, V.P. (1992). Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures. Plasma Sources Science and Technology, 1(3), 207. DOI: 10.1088/0963-0252/1/3/011
  33. Morgan Database, www.lxcat.net, retrieved on May 4, 2025
  34. Lefkowitz, J.K., Guo, P., Rousso, A., Ju, Y. (2015). Species and temperature measurements of methane oxidation in a nanosecond repetitively pulsed discharge. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2048), 20140333. DOI: 10.1098/rsta.2014.0333
  35. Hayashi Database, www.lxcat.net, retrieved on May 4, 2025
  36. Eichwald, O., Yousfi, M., Hennad, A., Benabdessadok, M.D. (1997). Coupling of chemical kinetics, gas dynamics, and charged particle kinetics models for the analysis of NO reduction from flue gases. Journal of Applied Physics, 82(10), 4781-4794. DOI: 10.1063/1.366336
  37. Lahouel, M.H.A. (2021). Modélisation et simulation d’une décharge à barrière diélectrique dans un mélange gazeux à la pression atmosphérique. Doctoral Dissertation. Hassiba Benbouali University of Chlef, supervised by D. Benyoucef & H. Tebani. Retrieved from http://hdl.handle.net/123456789/1642
  38. Mokhtaria, Benyamina. (2014). Etude de la production de l’ozone dans les décharges couronne. Université d'Offrandes Sciences et de la Technologie (USTOMB)
  39. Vichiansan, N., Leksakul, K., Chaopaisarn, P., Boonyawan, D. (2021). Simulation of simple 2D plasma jet model for NO, OH, and H2O2 production via Multiphysics in laminar flow and transport of diluted species through design of experiment method. AIP Advances, 11(3). DOI: 10.1063/5.0044611
  40. SIGLO Database, www.lxcat.net, retrieved on May 4, 2025
  41. Liu, D., Sun, B., Iza, F., Xu, D., Wang, X., Rong, M., Kong, M.G. (2017). Main species and chemical pathways in cold atmospheric-pressure Ar+ H2O plasmas. Plasma Sources Science and Technology, 26(4), 045009. DOI: 10.1088/1361-6595/aa5c22
  42. Baadj, S., Larouci, B., Belasri, A., Pontiga, F., Benmoussa, A., Saidia, L. (2023). Chemical and Electrical Aspects of Homogeneous Discharge in an Argon-Oxygen Mixture for Ozone Generation. Plasma Medicine, 13(4). DOI: 10.1615/PlasmaMed.2024052657

Last update:

No citation recorded.

Last update:

No citation recorded.