skip to main content

Effect of Aluminium Loading on SiO2/Al2O3-NiMo Catalysts Synthesized via KHP-template for Crude Palm Oil Hydrocracking

1Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Sriwijaya, Indralaya, Sumatra Selatan 30662, Indonesia

2Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

3Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya, Indralaya, Sumatra Selatan 30662, Indonesia

4 Research Center for Chemistry, Indonesian Institute of Sciences, Building 452 Kawasan PUSPIPTEK, Serpong, Tangerang Selatan, Banten, Indonesia

View all affiliations
Received: 6 Sep 2025; Revised: 7 Oct 2025; Accepted: 7 Oct 2025; Available online: 13 Oct 2025; Published: 26 Dec 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The present study evaluates the catalytic activity of SiO2/Al2O3‒x and SiO2/Al2O3‒x‒NiMo (where x = 5, 10, 25 g of aluminium weight) synthesized using a potassium hydrogen phthalate (KHP) template-assisted route for the hydrocracking of crude palm oil (CPO) into biofuels. Increasing Al weight modified acidity, porosity, and NiMo dispersion, leading to distinct catalytic behavior. The optimal SiO2/Al2O3‒x‒NiMo catalyst (10 g Al) achieved ~94% conversion, dominated by jet fuel-range hydrocarbons (C10-C14) through synergistic hydrodeoxygenation and acid-catalyzed cracking-isomerization pathway. The enhanced performance originates from the balance between acidity and metal dispersion, highlighting that both template selection and Al loading govern the design of efficient SiO2/Al2O3‒NiMo catalysts for biofuel production. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: SiO2/Al2O3; potassium hydrogen phthalate; crude palm oil, hydrocracking; NiMo catalyst
Funding: Ministry of Education, Culture, Research and Technology, Indonesia under contract 050/E5/PG.02.00.PL/2024.

Article Metrics:

  1. Wei, Q., Zhang, P., Liu, X., Huang, W., Fan, X., Yan, Y., Zhang, R., Wang, L., Zhou, Y. (2020). Synthesis of Ni-Modified ZSM-5 Zeolites and Their Catalytic Performance in n-Octane Hydroconversion. Frontiers in Chemistry, 8(December), 1–8. DOI: 10.3389/fchem.2020.586445
  2. Wang, J., Singer, S.D., Souto, B.A., Asomaning, J., Ullah, A., Bressler, D.C., Chen, G. (2022). Current progress in lipid-based biofuels: Feedstocks and production technologies. Bioresource Technology, 351(March), 127020. DOI: 10.1016/j.biortech.2022.127020
  3. Mancio, A.A., da Costa, K.M.B., Ferreira, C.C., Santos, M.C., Lhamas, D.E.L., da Mota, S.A.P., Leão, R.A.C., de Souza, R.O.M.A., Araújo, M.E., Borges, L.E.P., Machado, N.T. (2016). Thermal catalytic cracking of crude palm oil at pilot scale: Effect of the percentage of Na2CO3 on the quality of biofuels. Industrial Crops and Products, 91, 32–43. DOI: 10.1016/j.indcrop.2016.06.033
  4. Alisha, G.D., Trisunaryanti, W., Syoufian, A., Larasati, S. (2023). Synthesis of high stability Mo/SiO2 catalyst utilizing Parangtritis beach sand for hydrocracking waste palm oil into biofuel. Biomass Conversion and Biorefinery, 13, 11041–11055. DOI: 10.1007/s13399-021-02064-x
  5. Allwar, A., Maulina, R., Julianto, T.S., Widyaningtyas, A.A. (2022). Hydrocracking of crude palm oil over bimetallic oxide Nio-CdO/biochar catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 17(2), 476–485. DOI: 10.9767/bcrec.17.2.14074.476-485
  6. Liu, Y., Murata, K., Inaba, M. (2019). Hydrocracking of algae oil to aviation fuel-ranged hydrocarbons over NiMo-supported catalysts. Catalysis Today, 332, 115–121. DOI: 10.1016/j.cattod.2018.07.047
  7. Anand, M., Farooqui, S.A., Kumar, R., Joshi, R., Kumar, R., Sibi, M.G., Singh, H., Sinha, A.K. (2016). Optimizing renewable oil hydrocracking conditions for aviation bio-kerosene production. Fuel Processing Technology, 151, 50–58. DOI: 10.1016/j.fuproc.2016.05.028
  8. Sihombing, J.L., Pulungan, A.N., Herlinawati, H., Yusuf, M., Gea, S., Agusnar, H., Wirjosentono, B., Hutapea, Y.A. (2020). Characteristic and catalytic performance of Co and Co-Mo metal impregnated in sarulla natural zeolite catalyst for hydrocracking of MEFA rubber seed oil into biogasoline fraction. Catalysts, 10(1), 1–14. DOI: 10.3390/catal10010121
  9. Dujjanutat, P., Kaewkannetra, P. (2020). Production of bio-hydrogenated kerosene by catalytic hydrocracking from refined bleached deodorised palm/ palm kernel oils. Renewable Energy, 147, 464–472. DOI: 10.1016/j.renene.2019.09.015
  10. Srihanun, N., Dujjanutat, P., Muanruksa, P., Kaewekannetra, P. (2020). Biofuels of green diesel– kerosene–gasoline production from palm oil : Effect of palladium cooperated with second metal on hydrocracking reaction. Catalysts, 10(2), 241. DOI: 10.3390/catal10020241
  11. Lanzafame, P., Perathoner, S., Centi, G., Heracleous, E., Iliopoulou, E.F., Triantafyllidis, K.S., Lappas, A.A. (2017). Effect of the Structure and Mesoporosity in Ni/Zeolite Catalysts for n-Hexadecane Hydroisomerisation and Hydrocracking. ChemCatChem, 9(9), 1632–1640. DOI: https://doi.org/10.1002/cctc.201601670
  12. Escalona, G., Rai, A., Betancourt, P., Sinha, A.K. (2018). Selective poly-aromatics saturation and ring opening during hydroprocessing of light cycle oil over sulfided Ni-Mo/SiO2-Al2O3 catalyst. Fuel, 219(January), 270–278. DOI: 10.1016/j.fuel.2018.01.134
  13. Papageridis, K.N., Charisiou, N.D., Douvartzides, S.L., Sebastian, V., Hinder, S.J., Baker, M.A., AlKhoori, S., Polychronopoulou, K., Goula, M.A. (2020). Effect of operating parameters on the selective catalytic deoxygenation of palm oil to produce renewable diesel over Ni supported on Al2O3, ZrO2 and SiO2 catalysts. Fuel Processing Technology, 209(July) DOI: 10.1016/j.fuproc.2020.106547
  14. Saab, R., Polychronopoulou, K., Anjum, D.H., Charisiou, N.D., Goula, M.A., Hinder, S.J., Baker, M.A., Schiffer, A. (2022). Effect of SiO2/Al2O3 ratio in Ni/Zeolite-Y and Ni-W/Zeolite-Y catalysts on hydrocracking of heptane. Molecular Catalysis, 528(April), 112484. DOI: 10.1016/j.mcat.2022.112484
  15. Subsadsana, M., Sangdara, P., Ruangviriyachai, C. (2017). Effect of bimetallic NiW modified crystalline ZSM-5 zeolite on catalytic conversion of crude palm oil and identification of biofuel products. Asia-Pacific Journal of Chemical Engineering, 12(1), 147–158. DOI: 10.1002/apj.2061
  16. Kaewchada, A., Akkarawatkhoosith, N., Bunpim, D., Bangjang, T., Ngamcharussrivichai, C., Jaree, A. (2021). Production of bio-hydrogenated diesel from palm oil using Rh/HZSM-5 in a continuous mini fixed-bed reactor. Chemical Engineering and Processing - Process Intensification, 168(May), 108586. DOI: 10.1016/j.cep.2021.108586
  17. Hasanudin, H., Asri, W.R., Mara, A., Muttaqii, M. Al, Maryana, R., Rinaldi, N., Sagadevan, S., Zhang, Q., Fanani, Z., Hadiah, F. (2023). Enhancement of catalytic activity on crude palm oil hydrocracking over SiO2/Zr assisted with potassium hydrogen phthalate. ACS Omega, 8(23), 20858–20868. DOI: 10.1021/acsomega.3c01569
  18. Leyva, C., Ancheyta, J., Travert, A., Maugé, F., Mariey, L., Ramírez, J., Rana, M.S. (2012). Activity and surface properties of NiMo/SiO 2-Al 2O 3 catalysts for hydroprocessing of heavy oils. Applied Catalysis A: General, 425–426, 1–12. DOI: 10.1016/j.apcata.2012.02.033
  19. Villarreal, A., Ramírez, J., Caero, L.C., Villalón, P.C., Gutiérrez-Alejandre, A. (2015). Importance of the sulfidation step in the preparation of highly active NiMo/SiO2/Al2O3 hydrodesulfurization catalysts. Catalysis Today, 250, 60–65. DOI: 10.1016/j.cattod.2014.03.035
  20. Leyva, C., Ancheyta, J., Mariey, L., Travert, A., Maugé, F. (2014). Characterization study of NiMo/SiO2-Al2O3 spent hydroprocessing catalysts for heavy oils. Catalysis Today, 220–222, 89–96. DOI: 10.1016/j.cattod.2013.10.007
  21. Prokić-Vidojević, D., Glišić, S.B., Krstić, J.B., Orlović, A.M. (2021). Aerogel Re/Pd-TiO2/SiO2 and Co/Mo-Al2O3/SiO2 catalysts for hydrodesulphurisation of dibenzothiophene and 4,6-dimethyldibenzothiophene. Catalysis Today, 378(July 2020), 10–23. DOI: 10.1016/j.cattod.2020.11.022
  22. Li, M., Ihli, J., Verheijen, M.A., Holler, M., Guizar-Sicairos, M., Van Bokhoven, J.A., Hensen, E.J.M., Weber, T. (2022). Alumina-Supported NiMo Hydrotreating Catalysts─Aspects of 3D Structure, Synthesis, and Activity. Journal of Physical Chemistry C, 126(43), 18536–18549. DOI: 10.1021/acs.jpcc.2c05927
  23. Yusefabada, E.T., Tavasoli, A., Zamani, Y. (2020). The performance of NiMo/SiO2-Al2O3 and NiMo/SO4-Al2O3 catalysts for hydrocracking of n-hexadecane. Iranian Journal of Catalysis, 9(2), 127–134
  24. Hao, F., Zhong, J., Liu, P. Le, You, K.Y., Luo, H.A. (2012). Amorphous SiO2-Al2O3 supported Co3O4 and its catalytic properties in cyclohexane nitrosation to ε-caprolactam: Influences of preparation conditions. Journal of Molecular Catalysis A: Chemical, 363–364, 41–48. DOI: 10.1016/j.molcata.2012.05.014
  25. Asri, W.R., Hasanudin, H., Wijaya, K. (2024). Hydroconversion of Crude Palm Oil Over Highly Dispersed Porous Silica Modified Zirconium Nitride: Effect of EDTA and KHF Template. Silicon, 16, 83–97. DOI: 10.1007/s12633-023-02659-1
  26. Amaya, J., Suarez, N., Moreno, A., Moreno, S., Molina, R. (2020). Mo or W catalysts promoted with Ni or Co supported on modified bentonite for decane hydroconversion. New Journal of Chemistry, 44(7), 2966–2979. DOI: 10.1039/c9nj04878b
  27. Priecel, P., Kubička, D., Vázquez-Zavala, A., Antonio de los Reyes, J., Pouzar, M., Čapek, L. (2020). Alternative Preparation of Improved NiMo-Alumina Deoxygenation Catalysts. Frontiers in Chemistry, 8(April), 1–12. DOI: 10.3389/fchem.2020.00216
  28. Aryee, E., Dalai, A.K., Adjaye, J. (2021). Synthesis and Characterization of NiMo Catalysts Supported on Fine Carbon Particles for Hydrotreating: Effects of Metal Loadings in Catalyst Formulation. Frontiers in Chemical Engineering, 3(January), 1–14. DOI: 10.3389/fceng.2021.764931
  29. Yang, J.K., Zuo, T.J., Lu, Y.Y., Zeng, W.S., Lu, J.Y. (2019). Catalytic performance of NiMo/Al2O3-USY in the hydrocracking of low-temperature coal tar. Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 47(9), 1053–1066. DOI: 10.1016/s1872-5813(19)30043-x
  30. Fernández-Vargas, C., Ramírez, J., Gutiérrez-Alejandre, A., Sánchez-Minero, F., Cuevas-García, R., Torres-Mancera, P. (2008). Synthesis, characterization and evaluation of NiMo/SiO2-Al2O3 catalysts prepared by the pH-swing method. Catalysis Today, 130(2–4), 337–344. DOI: 10.1016/j.cattod.2007.10.101
  31. Leyva, C., Rana, M.S., Ancheyta, J. (2008). Surface characterization of Al2O3-SiO2 supported NiMo catalysts: An effect of support composition. Catalysis Today, 130(2–4), 345–353. DOI: 10.1016/j.cattod.2007.10.113
  32. Al-Dalama, K., Stanislaus, A. (2011). Temperature programmed reduction of SiO2-Al2O 3 supported Ni, Mo and NiMo catalysts prepared with EDTA. Thermochimica Acta, 520(1–2), 67–74. DOI: 10.1016/j.tca.2011.03.017
  33. Fanani, Z., Asri, W.R., Dwiyanti, B., Rinaldi, N., Maryana, R., Muttaqii, M. Al, Riyanti, F., Mara, A., Zainul, R., Hasanudin, H. (2024). Efficient Catalytic Hydrocracking of Crude Palm Oil Over EDTA Template-assisted SiO2-Al2O3/ NiMo Catalysts. Periodica Polytechnica Chemical Engineering, 68(4), 552–560
  34. Hosseinpour, N., Khodadadi, A.A., Mortazavi, Y., Bazyari, A. (2009). Nano-ceria-zirconia promoter effects on enhanced coke combustion and oxidation of CO formed in regeneration of silica-alumina coked during cracking of triisopropylbenzene. Applied Catalysis A: General, 353(2), 271–281. DOI: 10.1016/j.apcata.2008.10.051
  35. Hamidi, R., Khoshbin, R., Karimzadeh, R. (2021). A new approach for synthesis of well-crystallized Y zeolite from bentonite and rice husk ash used in Ni-Mo/Al2O3-Y hybrid nanocatalyst for hydrocracking of heavy oil. Advanced Powder Technology, 32(2), 524–534. DOI: 10.1016/j.apt.2020.12.029
  36. Oudghiri-Hassani, H., Al Wadaani, F. (2018). Preparation, Characterization and Catalytic Activity of Nickel Molybdate (NiMoO4) Nanoparticles. Molecules, 23, 273. DOI: 10.3390/molecules23020273
  37. Majewski, A.J., Wood, J., Bujalski, W. (2013). Nickel-silica core@shell catalyst for methane reforming. International Journal of Hydrogen Energy, 38(34), 14531–14541. DOI: 10.1016/j.ijhydene.2013.09.017
  38. Ando, M.F., Benzine, O., Pan, Z., Garden, J., Wondraczek, K., Grimm, S., Schuster, K., Wondraczek, L. (2018). Boson peak , heterogeneity and intermediate-range order in binary SiO2-Al2O3 glasses. Scientific Reports, 8, 5394. DOI: 10.1038/s41598-018-23574-1
  39. Jothi Ramalingam, R., Appaturi, J.N., Pulingam, T., Al-Lohedan, H.A., Al-dhayan, D.M. (2020). In-situ incorporation of ruthenium/copper nanoparticles in mesoporous silica derived from rice husk ash for catalytic acetylation of glycerol. Renewable Energy, 160, 564–574. DOI: 10.1016/j.renene.2020.06.095
  40. Gobara, H.M., Hassan, S.A., Betiha, M.A. (2016). The interaction characteristics controlling dispersion mode-catalytic functionality relationship of silica–modified montmorillonite-anchored Ni nanoparticles in petrochemical processes. Materials Chemistry and Physics, 181, 476–486. DOI: 10.1016/j.matchemphys.2016.06.084
  41. Cornac, M., Janin, A., Lavalley, J.C. (1984). Application of FTIR spectroscopy to the study of sulfidation of Mo catalysts supported on alumina or silica (4000–400 cm−1 range). Infrared Physics, 24(2), 143–150. DOI: https://doi.org/10.1016/0020-0891(84)90062-9
  42. Wachs, I.E. (1996). Raman and IR studies of surface metal oxide species on oxide supports: Supported metal oxide catalysts. Catalysis Today, 27(3–4), 437–455. DOI: 10.1016/0920-5861(95)00203-0
  43. Topsoe, N.Y., Topsoe, H. (1993). FTIR Studies of Mo/Al2O3-Based Catalysts: I. Morphology and Structure of Calcined and Sulfided Catalysts. Journal of Catalysis, 139(2), 631–640. DOI: https://doi.org/10.1006/jcat.1993.1055
  44. Morales Hernández, G., Escobar, J., Pacheco Sosa, J.G., Guzmán Cruz, M.A., Torres Torres, J.G., del Ángel Vicente, P., Barrera, M.C., Santolalla Vargas, C.E., Pérez Vidal, H. (2024). La-Modified SBA-15 Prepared by Direct Synthesis: Importance of Determining Actual Composition. Catalysts, 14(7), 1–13. DOI: 10.3390/catal14070436
  45. Jafarian, S., Tavasoli, A., Nikkhah, H. (2019). Catalytic hydrotreating of pyro-oil derived from green microalgae spirulina the (Arthrospira) plantensis over NiMo catalysts impregnated over a novel hybrid support. International Journal of Hydrogen Energy, 44(36), 19855–19867. DOI: 10.1016/j.ijhydene.2019.05.182
  46. Yu, X., Liu, B., Zhang, Y. (2019). Effect of Si/Al ratio of high-silica HZSM-5 catalysts on the prins condensation of isobutylene and formaldehyde to isoprene. Heliyon, 5(5), e01640. DOI: 10.1016/j.heliyon.2019.e01640
  47. Wu, J., Zhu, H., Wu, Z., Qin, Z., Yan, L., Du, B., Fan, W., Wang, J. (2015). High Si/Al ratio HZSM-5 zeolite: An efficient catalyst for the synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene. Green Chemistry, 17(4), 2353–2357. DOI: 10.1039/c4gc02510e
  48. Korde, A., Min, B., Almas, Q., Chiang, Y., Nair, S., Jones, C.W. (2019). Effect of Si/Al Ratio on the Catalytic Activity of Two-Dimensional MFI Nanosheets in Aromatic Alkylation and Alcohol Etherification. ChemCatChem, 11(18), 4548–4557. DOI: 10.1002/cctc.201901042
  49. Lü, J., Zhou, S., Ma, K., Meng, M., Tian, Y. (2015). The effect of P modification on the acidity of HZSM-5 and P-HZSM-5/CuO-ZnO-Al2O3 mixed catalysts for hydrogen production by dimethyl ether steam reforming. Chinese Journal of Catalysis, 36(8), 1295–1303. DOI: https://doi.org/10.1016/S1872-2067(15)60883-X
  50. Yang, X., Liu, J., Fan, K., Rong, L. (2017). Hydrocracking of Jatropha Oil over non-sulfided PTA-NiMo/ZSM-5 Catalyst. Scientific Reports, 7(January), 1–14. DOI: 10.1038/srep41654
  51. Vandevyvere, T., Sabbe, M.K., Mendes, P.S.F., Thybaut, J.W., Lauwaert, J. (2023). NiCu-based catalysts for the low-temperature hydrodeoxygenation of anisole: Effect of the metal ratio on SiO2 and γ-Al2O3 supports. Green Carbon, 1(2), 170–184. DOI: 10.1016/j.greenca.2023.10.001
  52. Asri, W.R., Hasanudin, H., Wijaya, K. (2024). Highly Active Mesoporous Zirconium Nitride Immobilized on SiO2 Synthesized by Complex-Assisted Method with EDTA and KHP for Catalytic Hydroconversion of Crude Palm Oil. Catalysis Surveys from Asia, 28, 74–87. DOI: 10.1007/s10563-023-09413-y
  53. Gustavo, F., Silveira, H., Villarroel-rocha, J., Sapag, K., Berenice, S., Gabriella, A., Santos, D. (2024). Al/SBA-15 Mesoporous Material: A Study of pH Influence over Aluminum Insertion into the Framework. Nanomaterials, 14(2). DOI: 10.3390/nano14020208
  54. Putri, Q.U., Hasanudin, H., Asri, W.R. (2023). Production of levulinic acid from glucose using nickel phosphate ‑ silica catalyst. Reaction Kinetics, Mechanisms and Catalysis, 136(1), 287–309. DOI: 10.1007/s11144-022-02334-3
  55. Shimura, K., Yoshida, S., Oikawa, H., Fujitani, T. (2022). Ethylene oligomerization over NiOx/SiO2-Al2O3 catalysts prepared by a coprecipitation method. Molecular Catalysis, 528, 112478. DOI: 10.1016/j.mcat.2022.112478
  56. Zhang, J., Chen, T., Jiao, Y., Cheng, M., Wang, L.L., Wang, J.L., Li, X.Y., Chen, Y.Q. (2021). Improved activity of Ni–Mo/SiO2 bimetallic catalyst synthesized via sol-gel method for methylcyclohexane cracking. Petroleum Science, 18(5), 1530–1542. DOI: 10.1016/j.petsci.2021.08.009
  57. Liu, Y., Pan, C., Zou, Y., Wu, F., You, Z., Li, J. (2023). Nano-Fe/SiO2 catalysts prepared by facile colloidal deposition: Enhanced durability in Fischer-Tropsch synthesis. Fuel, 333(P2), 126514. DOI: 10.1016/j.fuel.2022.126514
  58. Kaplin, I.Y., Lokteva, E.S., Golubina, E. V., Lunin, V. V. (2020). Template synthesis of porous ceria-based catalysts for environmental application. Molecules, 25(18) DOI: 10.3390/molecules25184242
  59. Lenhardt, K.R., Breitzke, H., Buntkowsky, G., Reimhult, E., Willinger, M., Rennert, T. (2021). Synthesis of short-range ordered aluminosilicates at ambient conditions. Scientific Reports, 11(1), 1–13. DOI: 10.1038/s41598-021-83643-w
  60. Hensen, E.J.M., Poduval, D.G., Magusin, P.C.M.M., Coumans, A.E., Veen, J.A.R. va. (2010). Formation of acid sites in amorphous silica-alumina. Journal of Catalysis, 269(1), 201–218. DOI: 10.1016/j.jcat.2009.11.008
  61. Kumar, P., Maity, S.K., Shee, D. (2019). Role of NiMo Alloy and Ni Species in the Performance of NiMo/Alumina Catalysts for Hydrodeoxygenation of Stearic Acid: A Kinetic Study. ACS Omega, 4(2), 2833–2843. DOI: 10.1021/acsomega.8b03592
  62. Subsadsana, M., Sansuk, S., Ruangviriyachai, C. (2018). Enhanced liquid biofuel production from crude palm oil over synthesized NiMoW-ZSM-5/MCM-41 catalyst. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 40(2), 237–243. DOI: 10.1080/15567036.2017.1411992

Last update:

No citation recorded.

Last update:

No citation recorded.