Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara Bulaksumur, Yogyakarta 55281, Indonesia
BibTex Citation Data :
@article{BCREC20464, author = {Fajar Inggit Pambudi and Eko Sri Kunarti and Robby Noor Cahyono and Nabila Nur Agusti}, title = {Missing Linker Defects in Heterometallic (Zn/Cd)-MOF-5: A First-Principles Study of Structural Properties and Gas Interaction}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {20}, number = {4}, year = {2025}, keywords = {metal-organic frameworks; MOF; defect; mixed metals; gas adsorption; DFT}, abstract = { The defect structures in multicomponent metal-organic frameworks (MOFs), specifically mixed-metal (Zn/Cd)-MOF-5, were investigated by examining the removal of a benzenedicarboxylate (bdc 2- ) linker. The defect formation, induced by the reaction with water, was studied, and the reaction energy was calculated to be relatively low, ranging from 0.24 eV to 0.60 eV. The removal of a bdc 2- linker is energetically favourable when it is initially coordinated to both Zn 2+ and Cd 2+ ions. The electronic properties of defective (Zn/Cd)-MOF-5 were analyzed in terms of bandgap energy and density of states profile. The removal of the bdc 2- linker slightly reduced the bandgap energy and affected the electronic states of both carbon and oxygen atoms. To evaluate the impact of defects, interactions with various gas molecules, including H 2 O, CO 2 , CO, H 2 S, and NO 2 , were studied. The defective (Zn/Cd)-MOF-5 showed a strong preference for H 2 O molecules, while CO 2 exhibited the lowest binding preference among the gases studied. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {1978-2993}, pages = {736--749} doi = {10.9767/bcrec.20464}, url = {https://journal.bcrec.id/index.php/bcrec/article/view/20464} }
Refworks Citation Data :
The defect structures in multicomponent metal-organic frameworks (MOFs), specifically mixed-metal (Zn/Cd)-MOF-5, were investigated by examining the removal of a benzenedicarboxylate (bdc2-) linker. The defect formation, induced by the reaction with water, was studied, and the reaction energy was calculated to be relatively low, ranging from 0.24 eV to 0.60 eV. The removal of a bdc2- linker is energetically favourable when it is initially coordinated to both Zn2+ and Cd2+ ions. The electronic properties of defective (Zn/Cd)-MOF-5 were analyzed in terms of bandgap energy and density of states profile. The removal of the bdc2- linker slightly reduced the bandgap energy and affected the electronic states of both carbon and oxygen atoms. To evaluate the impact of defects, interactions with various gas molecules, including H2O, CO2, CO, H2S, and NO2, were studied. The defective (Zn/Cd)-MOF-5 showed a strong preference for H2O molecules, while CO2 exhibited the lowest binding preference among the gases studied. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group. This agreement deals with the transfer or license of the right for publishing to Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group, while Authors still retain significant all copy rights to use and share their own published articles. Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have all copy rights for a large range of uses of your article, including use by your employing institute or company. These Author copy rights can be exercised without the need to obtain specific permission. Authors who publishing in BCREC journals have wide copy rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal (Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group).
Upon acceptance of an article, authors will be asked to complete a 'Right Transfer Agreement for Publishing (RTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Right Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of right for publishing (RTAP), our journal Author(s) still retain (or are granted back) significant scholarly copy rights as mentioned before.
The Right Transfer Agreement for Publishing (RTAP) Form can be downloaded here: [Right Transfer Agreement for Publishing (RTAP) Form BCREC 2025]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id ; bcrec[at]che.undip.ac.id
(This policy statements has been updated at 24th January 2024)