skip to main content

Missing Linker Defects in Heterometallic (Zn/Cd)-MOF-5: A First-Principles Study of Structural Properties and Gas Interaction

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara Bulaksumur, Yogyakarta 55281, Indonesia

Received: 5 Aug 2025; Revised: 15 Oct 2025; Accepted: 15 Oct 2025; Available online: 23 Oct 2025; Published: 26 Dec 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The defect structures in multicomponent metal-organic frameworks (MOFs), specifically mixed-metal (Zn/Cd)-MOF-5, were investigated by examining the removal of a benzenedicarboxylate (bdc2-) linker. The defect formation, induced by the reaction with water, was studied, and the reaction energy was calculated to be relatively low, ranging from 0.24 eV to 0.60 eV. The removal of a bdc2- linker is energetically favourable when it is initially coordinated to both Zn2+ and Cd2+ ions. The electronic properties of defective (Zn/Cd)-MOF-5 were analyzed in terms of bandgap energy and density of states profile. The removal of the bdc2- linker slightly reduced the bandgap energy and affected the electronic states of both carbon and oxygen atoms. To evaluate the impact of defects, interactions with various gas molecules, including H2O, CO2, CO, H2S, and NO2, were studied. The defective (Zn/Cd)-MOF-5 showed a strong preference for H2O molecules, while CO2 exhibited the lowest binding preference among the gases studied. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: metal-organic frameworks; MOF; defect; mixed metals; gas adsorption; DFT
Funding: Universitas Gadjah Mada under contract 4419/UN1/DITLIT/PT.01.03/2024

Article Metrics:

  1. Kirchon, A., Feng, L., Drake, H.F., Joseph, E.A., Zhou, H.-C. (2018). From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chemical Society Reviews, 47(23), 8611–8638. DOI: 10.1039/C8CS00688A
  2. Fonseca, J., Gong, T., Jiao, L., Jiang, H.-L. (2021). Metal–organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses. Journal of Materials Chemistry A, 9(17), 10562–10611. DOI: 10.1039/D1TA01043C
  3. Stock, N., Biswas, S. (2012). Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chemical Reviews, 112(2), 933–969. DOI: 10.1021/cr200304e
  4. Liu, C., Wang, J., Wan, J., Yu, C. (2021). MOF-on-MOF hybrids: Synthesis and applications. Coordination Chemistry Reviews, 432, 213743. DOI: 10.1016/j.ccr.2020.213743
  5. Ding, M., Flaig, R.W., Jiang, H.-L., Yaghi, O.M. (2019). Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 48(10), 2783–2828. DOI: 10.1039/C8CS00829A
  6. Wang, Q., Astruc, D. (2020). State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chemical Reviews, 120(2), 1438–1511. DOI: 10.1021/acs.chemrev.9b00223
  7. Shi, Y., Yang, A.F., Cao, C.S., Zhao, B. (2019). Applications of MOFs: Recent advances in photocatalytic hydrogen production from water. Coordination Chemistry Reviews, 390, 50–75. DOI: 10.1016/J.CCR.2019.03.012
  8. Freund, R., Zaremba, O., Arnauts, G., Ameloot, R., Skorupskii, G., Dincă, M., Bavykina, A., Gascon, J., Ejsmont, A., Goscianska, J., Kalmutzki, M., Lächelt, U., Ploetz, E., Diercks, C.S., Wuttke, S. (2021). The Current Status of MOF and COF Applications. Angewandte Chemie International Edition, 60(45), 23975–24001. DOI: 10.1002/anie.202106259
  9. Yusuf, V.F., Malek, N.I., Kailasa, S.K. (2022). Review on Metal-Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment. ACS Omega, 7(49), 44507–44531. DOI: 10.1021/acsomega.2c05310
  10. Srepusharawoot, P., Araújo, C.M., Blomqvist, A., Scheicher, R.H., Ahuja, R. (2008). A comparative investigation of H2 adsorption strength in Cd- and Zn-based metal organic framework-5. The Journal of Chemical Physics, 129(16) DOI: 10.1063/1.2997377
  11. EL Kassaoui, M., Lakhal, M., Benyoussef, A., El Kenz, A., Loulidi, M. (2021). Enhancement of hydrogen storage properties of metal-organic framework-5 by substitution (Zn, Cd and Mg) and decoration (Li, Be and Na). International Journal of Hydrogen Energy, 46(52), 26426–26436. DOI: 10.1016/j.ijhydene.2021.05.107
  12. Denny, M.S., Kalaj, M., Bentz, K.C., Cohen, S.M. (2018). Multicomponent metal-organic framework membranes for advanced functional composites. Chemical Science, 9(47), 8842–8849. DOI: 10.1039/c8sc02356e
  13. Bae, Y.-S., Mulfort, K.L., Frost, H., Ryan, P., Punnathanam, S., Broadbelt, L.J., Hupp, J.T., Snurr, R.Q. (2008). Separation of CO 2 from CH 4 Using Mixed-Ligand Metal−Organic Frameworks. Langmuir, 24(16), 8592–8598. DOI: 10.1021/la800555x
  14. Marti, R.M., Howe, J.D., Morelock, C.R., Conradi, M.S., Walton, K.S., Sholl, D.S., Hayes, S.E. (2017). CO2 dynamics in pure and mixed-metal MOFs with open metal sites. Journal of Physical Chemistry C, 121(39) DOI: 10.1021/acs.jpcc.7b07179
  15. Sun, D., Sun, F., Deng, X., Li, Z. (2015). Mixed-Metal Strategy on Metal-Organic Frameworks (MOFs) for Functionalities Expansion: Co Substitution Induces Aerobic Oxidation of Cyclohexene over Inactive Ni-MOF-74. Inorganic Chemistry, 54(17), 8639–8643. DOI: 10.1021/acs.inorgchem.5b01278
  16. Pambudi, F.I. (2022). Electronic properties of heterometallic zeolitic imidazolate framework and its encapsulation with Ni, Pd and Pt. Inorganic Chemistry Communications, 143, 109798. DOI: 10.1016/j.inoche.2022.109798
  17. Zhang, S., Liu, J., Liu, L. (2021). Insights into the thermal conductivity of MOF-5 from first principles. RSC Advances, 11(58), 36928–36933. DOI: 10.1039/D1RA07022C
  18. Mali, G., Mazaj, M., Arčon, I., Hanžel, D., Arčon, D., Jagličić, Z. (2019). Unraveling the Arrangement of Al and Fe within the Framework Explains the Magnetism of Mixed-Metal MIL-100(Al,Fe). Journal of Physical Chemistry Letters, 10(7), 1464–1470. DOI: 10.1021/acs.jpclett.9b00341
  19. Sun, J., Semenchenko, L., Lim, W.T., Ballesteros Rivas, M.F., Varela-Guerrero, V., Jeong, H.K. (2018). Facile synthesis of Cd-substituted zeolitic-imidazolate framework Cd-ZIF-8 and mixed-metal CdZn-ZIF-8. Microporous and Mesoporous Materials, 264, 35–42. DOI: 10.1016/j.micromeso.2017.12.032
  20. Lomachenko, K.A., Jacobsen, J., Bugaev, A.L., Atzori, C., Bonino, F., Bordiga, S., Stock, N., Lamberti, C. (2018). Exact Stoichiometry of Ce x Zr 6-x Cornerstones in Mixed-Metal UiO-66 Metal-Organic Frameworks Revealed by Extended X-ray Absorption Fine Structure Spectroscopy. Journal of the American Chemical Society, 140(50), 17379–17383. DOI: 10.1021/jacs.8b10343
  21. Tang, J., Li, S., Xu, J., Deng, F. (2022). Spectroscopic Characterizations of Porous Mixed Metal Oxides Derived from Metal–Organic Framework MIL-53(Ga, Al) for Propane Dehydrogenation. The Journal of Physical Chemistry C, 126(31), 13485–13495. DOI: 10.1021/acs.jpcc.2c04072
  22. Jia, H., Han, Q., Luo, W., Cong, H., Deng, H. (2022). Sequence control of metals in MOF by coordination number precoding for electrocatalytic oxygen evolution. Chem Catalysis, 2(1), 84–101. DOI: 10.1016/j.checat.2021.10.007
  23. Fang, Z., Bueken, B., De Vos, D.E., Fischer, R.A. (2015). Defect-Engineered Metal-Organic Frameworks. Angewandte Chemie - International Edition, 54(25), 7234–7254. DOI: 10.1002/anie.201411540
  24. Cai, G., Jiang, H.L. (2017). A Modulator-Induced Defect-Formation Strategy to Hierarchically Porous Metal–Organic Frameworks with High Stability. Angewandte Chemie International Edition, 56(2), 563–567. DOI: 10.1002/ANIE.201610914
  25. Xiang, W., Zhang, Y., Chen, Y., Liu, C.J., Tu, X. (2020). Synthesis, characterization and application of defective metal-organic frameworks: Current status and perspectives. Journal of Materials Chemistry A, 8(41), 21526–21546. DOI: 10.1039/d0ta08009h
  26. Feng, Y., Chen, Q., Jiang, M., Yao, J. (2019). Tailoring the Properties of UiO-66 through Defect Engineering: A Review. Industrial and Engineering Chemistry Research, 58(38), 17646–17659. DOI: 10.1021/acs.iecr.9b03188
  27. Hou, X., Wang, J., Mousavi, B., Klomkliang, N., Chaemchuen, S. (2022). Strategies for induced defects in metal–organic frameworks for enhancing adsorption and catalytic performance. Dalton Transactions, 51(21), 8133–8159. DOI: 10.1039/D2DT01030E
  28. Portillo-Vélez, N.S., Obeso, J.L., de los Reyes, J.A., Peralta, R.A., Ibarra, I.A., Huxley, M.T. (2024). Benefits and complexity of defects in metal-organic frameworks. Communications Materials, 5(1), 247. DOI: 10.1038/s43246-024-00691-1
  29. Mautschke, H.H., Drache, F., Senkovska, I., Kaskel, S., Llabrés Xamena, F.X.I. (2018). Catalytic properties of pristine and defect-engineered Zr-MOF-808 metal organic frameworks. Catalysis Science & Technology, 8(14), 3610–3616. DOI: 10.1039/C8CY00742J
  30. Cheng, P., Hu, Y.H. (2016). Acetylene adsorption on defected MIL-53. International Journal of Energy Research, 40(6), 846–852. DOI: 10.1002/ER.3492
  31. Ardila-Suárez, C., Perez-Beltran, S., Ramírez-Caballero, G.E., Balbuena, P.B. (2018). Enhanced acidity of defective MOF-808: effects of the activation process and missing linker defects. Catalysis Science & Technology, 8(3), 847–857. DOI: 10.1039/C7CY02462B
  32. Iacomi, P., Formalik, F., Marreiros, J., Shang, J., Rogacka, J., Mohmeyer, A., Behrens, P., Ameloot, R., Kuchta, B., Llewellyn, P.L. (2019). Role of Structural Defects in the Adsorption and Separation of C3 Hydrocarbons in Zr-Fumarate-MOF (MOF-801). Chemistry of Materials, 31(20), 8413–8423. DOI: 10.1021/acs.chemmater.9b02322
  33. Prasetya, N., Li, K. (2022). Synthesis of defective MOF-801 via an environmentally benign approach for diclofenac removal from water streams. Separation and Purification Technology, 301, 122024. DOI: 10.1016/j.seppur.2022.122024
  34. Zoundi, Z. (2017). CO2 emissions, renewable energy and the Environmental Kuznets Curve, a panel cointegration approach. Renewable and Sustainable Energy Reviews, 72, 1067–1075. DOI: 10.1016/j.rser.2016.10.018
  35. Eddaoudi, M., Li, H., Reineke, T., Fehr, M., Kelley, D., Groy, T.L., Yaghi, O.M. (1999). Design and synthesis of metal-carboxylate frameworks with permanent microporosity. Topics in Catalysis, 9(1/2), 105–111. DOI: 10.1023/A:1019110622091
  36. Kühne, T.D., Iannuzzi, M., Del Ben, M., Rybkin, V. V., Seewald, P., Stein, F., Laino, T., Khaliullin, R.Z., Schütt, O., Schiffmann, F., Golze, D., Wilhelm, J., Chulkov, S., Bani-Hashemian, M.H., Weber, V., Borštnik, U., Taillefumier, M., Jakobovits, A.S., Lazzaro, A., Pabst, H., Müller, T., Schade, R., Guidon, M., Andermatt, S., Holmberg, N., Schenter, G.K., Hehn, A., Bussy, A., Belleflamme, F., Tabacchi, G., Glöß, A., Lass, M., Bethune, I., Mundy, C.J., Plessl, C., Watkins, M., VandeVondele, J., Krack, M., Hutter, J. (2020). CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. The Journal of Chemical Physics, 152(19) DOI: 10.1063/5.0007045
  37. Neese, F. (2012). The ORCA program system. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(1), 73–78. DOI: 10.1002/WCMS.81
  38. Yang, L.-M., Fang, G.-Y., Ma, J., Ganz, E., Han, S.S. (2014). Band Gap Engineering of Paradigm MOF-5. Crystal Growth & Design, 14(5), 2532–2541. DOI: 10.1021/cg500243s
  39. Pambudi, F.I., Prasetyo, N. (2021). Theoretical investigation on the structure of mixed-metal zeolitic imidazolate framework and its interaction with CO2. Computational Materials Science, 111033. DOI: 10.1016/j.commatsci.2021.111033
  40. Pambudi, F.I., Pratiwi, N.S., Chusnawati, U. (2023). First-principle study on the lattice-directed missing linker defect in zirconium based metal-organic framework (MOF-801): Electronic properties and interaction with hydrogen. Materials Today Communications, 35, 105967. DOI: 10.1016/j.mtcomm.2023.105967
  41. Tassé, D., Quezada‐Novoa, V., Copeman, C., Howarth, A.J., Rochefort, A. (2025). Identification of Adsorption Sites for CO 2 in a Series of Rare‐Earth and Zr‐Based Metal‐Organic Frameworks. ChemPhysChem, 26(10) DOI: 10.1002/cphc.202401050
  42. Yu, J., Balbuena, P.B. (2013). Water Effects on Postcombustion CO 2 Capture in Mg-MOF-74. The Journal of Physical Chemistry C, 117(7), 3383–3388. DOI: 10.1021/jp311118x
  43. Nachimuthu, S., Su, M.-S., Wu, L.-T., Yu, C.-T., Jiang, J.-C. (2025). Tunable CO2 capture in N-ethylethylenediamine functionalized Mg2-MOF-74: unraveling the role of diamine basicity in reactivity and adsorption capacity. Chemical Engineering Journal, 515, 163587. DOI: 10.1016/j.cej.2025.163587
  44. Martínez-Ahumada, E., López-Olvera, A., Jancik, V., Sánchez-Bautista, J.E., González-Zamora, E., Martis, V., Williams, D.R., Ibarra, I.A. (2020). MOF Materials for the Capture of Highly Toxic H 2 S and SO 2. Organometallics, 39(7), 883–915. DOI: 10.1021/acs.organomet.9b00735
  45. Hamon, L., Serre, C., Devic, T., Loiseau, T., Millange, F., Férey, G., Weireld, G. De (2009). Comparative Study of Hydrogen Sulfide Adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) Metal−Organic Frameworks at Room Temperature. Journal of the American Chemical Society, 131(25), 8775–8777. DOI: 10.1021/ja901587t
  46. Petit, C., Mendoza, B., Bandosz, T.J. (2010). Hydrogen Sulfide Adsorption on MOFs and MOF/Graphite Oxide Composites. ChemPhysChem, 11(17), 3678–3684. DOI: 10.1002/cphc.201000689
  47. An, Y., Lv, X., Jiang, W., Wang, L., Shi, Y., Hang, X., Pang, H. (2024). The stability of MOFs in aqueous solutions—research progress and prospects. Green Chemical Engineering, 5(2), 187–204. DOI: 10.1016/j.gce.2023.07.004
  48. Ming, Y., Kumar, N., Siegel, D.J. (2017). Water Adsorption and Insertion in MOF-5. ACS Omega, 2(8), 4921–4928. DOI: 10.1021/acsomega.7b01129
  49. Qi, Z.-P., Yang, J.-M., Kang, Y.-S., Guo, F., Sun, W.-Y. (2016). Facile water-stability evaluation of metal–organic frameworks and the property of selective removal of dyes from aqueous solution. Dalton Transactions, 45(21), 8753–8759. DOI: 10.1039/C6DT00886K
  50. Lu, T., Chen, Q. (2022). Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems. Journal of Computational Chemistry, 43(8), 539–555. DOI: 10.1002/jcc.26812

Last update:

No citation recorded.

Last update:

No citation recorded.