skip to main content

Tailoring Photocatalytic Activity of Sol-Gel-Derived Bismuth Oxide via Calcination Time Optimization for Methyl Orange Degradation

Chemistry Department, Faculty of Sciences and Mathematics, Universitas Diponegoro, Jl. Prof. Jacob Rais, Tembalang, Semarang, 50275, Indonesia

Received: 25 Jul 2025; Revised: 28 Oct 2025; Accepted: 29 Oct 2025; Available online: 6 Nov 2025; Published: 30 Apr 2026.
Editor(s): Rodiansono Rodiansono
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Bismuth oxide (Bi2O3) is a yellow solid, has good electrical properties and a wide band gap energy (2-3.96 eV). Therefore, this material is commonly used as a photocatalyst. This study aims to synthesize bismuth oxide using the sol-gel method, determine its physicochemical characteristics and photocatalytic activity in the degradation of methyl orange dyes. Bi2O3 is synthesized from Bi(NO3)3.5H2O which is reacted with citric acid at 100 ° C for 20 hours. The formed gel is then dried and calcined at 600 °C for 1, 2, 3, 4 and 5 hours. The synthesis results in the form of pale-yellow powder with the same crystal system that is a mixture of α-Bi2O3 (monoclinic) and γ-Bi2O3 (BCC) and has almost the same morphology that is similar to coral and has a particle size of 1-8 μm. The results of photocatalytic activity tests showed that the constant rate of degradation reaction of methyl orange by bismuth oxide with calcination time of 1, 2, 3, 4, and 5 hours respectively was 2.76×10-5 s-1, 2.65×10-5 s-1, 2.53×10-5 s-1, 2.81×10-5 s-1 and 3.87×10-5 s-1. Bismuth oxide with a calcination time of 5 hours has the highest photocatalytic activity. Meanwhile, bismuth oxide with a calcination time of 5 hours has a band-gap of 2.86 eV and 2.64 eV. The stages of decomposition of bismuth oxide material with a calcination time of 5 hours consisted of 3 release stages namely H2O, CO2, CxHyOz respectively 12.20%, 5.33% 30.54%. Copyright © 2026 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Bismuth oxide; Sol-gel; Calcination variation; Photocatalyst; Methyl orange
Funding: Universitas Diponegoro under contract WCRU 118-12/UN7.6.1/PP/2021

Article Metrics:

  1. Mallahi, M., Shokuhfar, A., Vaezi, M.R., Esmaeilirad, A., Mazinani, V. (2014). Synthesis and characterization of bismuth oxide nanoparticles via sol-gel method. American Journal of Engineering Research (AJER), 3(4), 162–165
  2. Sa’adah, F., Sutanto, H., Hadiyanto, H., Hu, C., Liou, Y.S., Ningsih, L.A. (2025). Photodegradation and toxicity assessment of doxycycline using metal (Co, Cu, Fe, and Zn) modified Bi2O3 thin films. Ceramic International, 51, 24, 40850-40863. DOI: 10.1016/j.ceramint.2025.06.310
  3. Sa’adah, F., Sutanto, H. (2022). Optimization of the Bi2O3/Cu synthesis process using response surface methodology as a tetracycline photodegradation agent. Results in Engineering, 16, 100521. DOI: 10.1016/j.rineng.2022.100521
  4. Sa’adah, F., Sutanto, H., Hadiyanto, H., Jaafar, J., Ilsatoham, I., Alkian, I. (2024). Removal of Levofloxacin by Copper Doped Bismuth Oxide Thin Films under UV Light Irradiation. Journal of Ecological Engineering, 25(8), 207–221. DOI: 10.12911/22998993/190116
  5. Khumaeni, A., Jonathan, F., Alkian, I., Sugito, H., Nurhasanah, I., Ibrahim, R.K.R., Julkapli, N.M. (2025). Direct synthesis of bismuth-doped ZnO nanoparticles in liquid precursor: A one-step pulsed laser ablation approach for enhanced photocatalytic dye removal. Journal of Molecular Liquids, 128054. DOI: 10.1016/j.molliq.2025.128054
  6. Pandiangan, I.F.D., Sutanto, H., Nurhasanah, I. (2018). Effect of annealing temperature on optical properties and photocatalytic properties of TiO2: N 8% thin film for rhodamine B degradation. Materials Research Express, 5(8), 086404. DOI: 10.1088/2053-1591/aad15d
  7. Ariyanti, D., Mills, L., Dong, J., Yao, Y., Gao, W. (2017). NaBH4 modified TiO2: Defect site enhancement related to its photocatalytic activity. Materials Chemistry and Physics, 199, 571–576. DOI: 10.1016/j.matchemphys.2017.07.054
  8. Sutanto, H., Wibowo, S., Hidayanto, E., Nurhasanah, I., Hadiyanto, H. (2015). Synthesized of Double Layer Thin Film ZnO/ZnO: Ag by Sol-Gel Method for Direct Blue 71 Photodegradation. Reaktor, 15(3), 175–181. DOI: 10.14710/reaktor.15.3.175-181
  9. Kusworo, T.D., Azizah, D.A., Kumoro, A.C., Kurniawan, T.A., Othman, M.H.D. (2023). Fabrication, characterization, and application of PSf/Ni@ ZnO amalgamated membrane for photocatalytic degradation of dyeing wastewater from batik industry. Materials Today Chemistry, 30, 101493. DOI: 10.1016/j.mtchem.2023.101493
  10. Qiu, Y., Yang, M., Fan, H., Zuo, Y., Shao, Y., Xu, Y., Yang, X., Yang, S. (2011). Phase-transitions of α-and β-Bi2O3 nanowires. Materials Letters, 65(4), 780–782. DOI: 10.1016/j.matlet.2010.11.045
  11. Hernandez-Delgadillo, R., Velasco-Arias, D., Martinez-Sanmiguel, J.J., Diaz, D., Zumeta-Dube, I., Arevalo-Niño, K., Cabral-Romero, C. (2013). Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation. International Journal of Nanomedicine, 8(1), 1645–1652. DOI: 10.2147/IJN.S38708
  12. Astuti, Y., Fauziyah, A., Nurhayati, S., Wulansari, A.D., Andianingrum, R., Hakim, A.R., Bhaduri, G. (2016). Synthesis of α-Bismuth oxide using solution combustion method and its photocatalytic properties. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, p. 012006. DOI: 10.1088/1757-899X/107/1/012006
  13. La, J., Huang, Y., Luo, G., Lai, J., Liu, C., Chu, G. (2013). Synthesis of bismuth oxide nanoparticles by solution combustion method. Particulate Science and Technology, 31(3), 287–290. DOI: 10.1080/02726351.2012.727525
  14. Astuti, Y., Amri, D., Widodo, D.S., Widiyandari, H., Balgis, R., Ogi, T. (2020). Effect of fuels on the physicochemical properties and photocatalytic activity of bismuth oxide, synthesized using solution combustion method. International Journal of Technology, 11(1), 26-36. DOI: 10.14716/ijtech.v11i1.3342
  15. Astuti, Y., Elesta, P.P., Widodo, D.S., Widiyandari, H., Balgis, R. (2020). Hydrazine and urea fueled-solution combustion method for Bi2O3 synthesis: characterization of physicochemical properties and photocatalytic activity. Bulletin of Chemical Reaction Engineering & Catalysis, 15(1), 104–111. DOI: 10.9767/bcrec.15.1.5483.104-111
  16. Astuti, Y., Mulyana, T.N., Tasiman, B.H.A., Darmawan, A., Widyandari, H. (2023). Hydrazine-fueled solution combustion method: Fuel/oxidizer ratio effects on photocatalytic performance of bismuth oxide. Bulletin of Chemical Reaction Engineering & Catalysis, 18(3), 539–547. DOI: 10.9767/bcrec.19943
  17. Anilkumar, M., Pasricha, R., Ravi, V. (2005). Synthesis of bismuth oxide nanoparticles by citrate gel method. Ceramics International, 31(6), 889–891. DOI: 10.1016/j.ceramint.2004.09.002
  18. Yang, Q., L.Y.W., Y.Q., W.P.-L.L., & C.Y.B. (2002). Hydrothermal Synthesis of Bismuth Oxide Needles. Materials Letters, 55(1–2), 46–49. DOI: 10.1016/S0167-577X(01)00617-6
  19. Amiri, A. (2016). Solid-phase microextraction-based sol–gel technique. TrAC Trends in Analytical Chemistry, 75, 57–74. DOI: 10.1016/j.trac.2015.10.003
  20. Pinjari, D. V, Prasad, K., Gogate, P.R., Mhaske, S.T., Pandit, A.B. (2015). Synthesis of titanium dioxide by ultrasound assisted sol–gel technique: Effect of calcination and sonication time. Ultrasonics Sonochemistry, 23, 185–191. DOI: 10.1016/j.ultsonch.2014.10.017
  21. Weidong, H., Wei, Q., Xiaohong, W., Xianbo, D., Long, C., Zhaohua, J. (2007). The photocatalytic properties of bismuth oxide films prepared through the sol–gel method. Thin Solid Films, 515(13), 5362–5365. DOI: 10.1016/j.tsf.2007.01.031
  22. Astuti, Y., Listyani, B.M., Suyati, L., Darmawan, A. (2021). Bismuth oxide prepared by sol-gel method: variation of physicochemical characteristics and photocatalytic activity due to difference in calcination temperature. Indonesian Journal of Chemistry, 21(1), 108–117. DOI: 10.22146/ijc.53144
  23. Ilsatoham, M.I., Alkian, I., Azzahra, G., Hidayanto, E., Sutanto, H. (2023). Effect of substrate temperature on the properties of Bi2O3 thin films grown by sol-gel spray coating. Results in Engineering, 17, 100991. DOI: 10.1016/j.rineng.2023.100991
  24. Kusworo, T.D., Kumoro, A.C., Aryanti, N., Kurniawan, T.A., Dalanta, F., Alias, N.H. (2023). Photocatalytic polysulfone membrane incorporated by ZnO-MnO2@ SiO2 composite under UV light irradiation for the reliable treatment of natural rubber-laden wastewater. Chemical Engineering Journal, 451, 138593. DOI: 10.1016/j.cej.2022.138593
  25. Astuti, Y., Nurhayati, S., Arnelli (2022). Effect of calcination temperature on the morphology and photocatalytic activity of Bismuth oxide. In: AIP Conference Proceedings. AIP Publishing LLC, p. 020043. DOI: 10.1063/5.0104124
  26. Hwang, B.J., Santhanam, R., Liu, D.G., Tsai, Y.W. (2001). Effect of Al-substitution on the stability of LiMn2O4 spinel, synthesized by citric acid sol–gel method. Journal of Power Sources, 102(1–2), 326–331. DOI: 10.1016/S0378-7753(01)00657-7
  27. Eastaugh, N., Walsh, V., Chaplin, T., Siddall, R. (2007). Pigment compendium: a dictionary of historical pigments. Routledge
  28. Bartonickova, E., Cihlar, J., Castkova, K. (2007). Microwave-assisted synthesis of bismuth oxide. Processing and Application of Ceramics, 1(1–2), 29–33. DOI: 10.2298/PAC0702029B
  29. Bandyopadhyay, S., Dutta, A. (2017). Thermal, optical and dielectric properties of phase stabilized δ–Dy-Bi2O3 ionic conductors. Journal of Physics and Chemistry of Solids, 102, 12–20. DOI: 10.1016/j.jpcs.2016.11.001
  30. Abdullah, E.A., Abdullah, A.H., Zainal, Z., Hussein, M.Z., Ban, T.K. (2012). Synthesis and Characterisation of Penta‐Bismuth Hepta‐Oxide Nitrate, Bi5O7NO3, as a New Adsorbent for Methyl Orange Removal from an Aqueous Solution. Journal of Chemistry, 9(4), 2429–2438. DOI: 10.1155/2012/707853
  31. Daniyati, R., Zharvan, V., Ichsan, N., Pramono, Y.H., Yudoyono, G. (2015). Penentuan energi celah pita optik film TiO2 menggunakan metode tauc plot. In: Prosiding Seminar Sains dan Teknologi. p. 5329. DOI: 10.3390/su14084500
  32. Iyyapushpam, S., Nishanthi, S.T., Padiyan, D.P. (2014). Enhanced photocatalytic degradation of methyl orange by gamma Bi2O3 and its kinetics. Journal of Alloys and Compounds, 601, 85–87. DOI: 10.1016/j.jallcom.2014.02.142
  33. Ibhadon, A.O., Fitzpatrick, P. (2013). Heterogeneous photocatalysis: recent advances and applications. Catalysts, 3(1), 189–218. DOI: 10.3390/catal3010189
  34. Devi, L.G., Kumar, S.G., Reddy, K.M., Munikrishnappa, C. (2009). Photo degradation of Methyl Orange an azo dye by Advanced Fenton Process using zero valent metallic iron: Influence of various reaction parameters and its degradation mechanism. Journal of Hazardous Materials, 164(2–3), 459–467. DOI: 10.1016/j.jhazmat.2008.08.017
  35. Radini, I.A., Hasan, N., Malik, M.A., Khan, Z. (2018). Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications. Journal of Photochemistry and Photobiology B: Biology, 183, 154–163. DOI: 10.1016/j.jphotobiol.2018.04.014
  36. Liu, X., Deng, H., Yao, W., Jiang, Q., Shen, J. (2015). Preparation and photocatalytic activity of Y-doped Bi2O3. Journal of Alloys and Compounds, 651, 135–142. DOI: 10.1016/j.jallcom.2015.08.068
  37. Wang, Q., Hui, J., Yang, L., Huang, H., Cai, Y., Yin, S., Ding, Y. (2014). Enhanced photocatalytic performance of Bi2O3/H-ZSM-5 composite for rhodamine B degradation under UV light irradiation. Applied Surface Science, 289, 224–229. DOI: 10.1016/j.apsusc.2013.10.139
  38. Bedoya Hincapie, C.M., Pinzon Cardenas, M.J., Alfonso Orjuela, J.E., Restrepo Parra, E., Olaya Florez, J.J. (2012). Physical-chemical properties of bismuth and bismuth oxides: Synthesis, characterization and applications. Dyna, 79(176), 139–148
  39. Rahmadhani, D., Ratnawulan, R., Hidayati, H., Fauzi, A., Steven, A., Azleen, F. (2023). Effect of Temperature Variation on Band Gap Value in Thin Layers of Nano Photocatalyst Fe2O3/CuO/MnO2. In: Journal of Physics: Conference Series. IOP Publishing, p. 012036. DOI: 10.1088/1742-6596/2582/1/012036
  40. Acers (2010). Progress in Nanotechnology: Processing. Wiley

Last update:

No citation recorded.

Last update:

No citation recorded.