skip to main content

Enhancing Monomeric Sugar Production from Coconut Husk by FeCl3-assisted Hydrothermal Pretreatment and Enzymatic Hydrolysis

1Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

2Departement of Chemical Engineering, Faculty of Engineering, Universitas Surabaya (UBAYA), Jalan Raya Kalirungkut (Tenggilis), Surabaya 60293, Indonesia

Received: 16 Jul 2025; Revised: 16 Aug 2025; Accepted: 18 Aug 2025; Available online: 2 Sep 2025; Published: 31 Oct 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Coconut husk (CCH), an abundant agricultural byproduct of the coconut processing industry, holds significant potential as a renewable feedstock for monomeric sugar production. However, efficient fractionation remains a challenge due to its recalcitrant lignocellulosic structure. This study investigates FeCl₃-assisted hydrothermal pretreatment (HTP) as a selective and scalable approach to enhance enzymatic hydrolysis efficiency and sugar recovery. The effects of FeCl₃ concentrations, temperatures, and unified of pretreatment conditions as combined hydrolysis factor (CHF) on biomass fractionation, modeling xylan dissolution, and monomeric sugar production were evaluated. Results indicate that 0.06 M FeCl₃ at 150 °C achieved the highest total monomeric sugar concentration of 7.364 g/L, an 11-fold increase compared to the non-catalyzed control (0.667 g/L) during HTP. This condition also facilitated 81.2% hemicellulose removal while minimizing cellulose and lignin degradation, thereby improving enzymatic digestibility. Furthermore, xylan hydrolysis also successfully developed with high correlation with unified CHF parameter. FeCl₃-assisted HTP CCH coupled with enzymatic hydrolysis further enhanced overall sugar recovery, with a total monomeric sugar yield of 18.4 g per 100 g raw CCH, representing a 4.4-fold increase compared to hydrothermally pretreated CCH without FeCl₃. These findings highlight FeCl₃-assisted HTP as a promising, cost-effective strategy for biomass fractionation, supporting its integration into lignocellulosic biorefineries for bio-based product development. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Coconut husk; FeCl3; monomeric sugar; hydrothermal; enzymatic hydrolysis
Funding: Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi under contract PMDSU

Article Metrics:

  1. Rodríguez-Rebelo, F., Rodríguez-Martínez, B., Del-Río, P.G., Collins, M.N., Garrote, G., Gullón, B. (2024). Assessment of deep eutectic solvents (DES) to fractionate Paulownia wood within a biorefinery scheme: Cellulosic bioethanol production and lignin isolation. Industrial Crops and Products, 216, 117220. DOI: 10.1016/j.indcrop.2024.118761
  2. Rathour, R.K., Behl, M., Dhashmana, K., Sakhuja, D., Ghai, H., Sharma, N., Meena, K.R., Bhatt, A.K., Bhatia, R.K. (2023). Non-food crops derived lignocellulose biorefinery for sustainable production of biomaterials, biochemicals and bioenergy: A review on trends and techniques. Industrial Crops and Products, 204, 117220. DOI: 10.1016/j.indcrop.2023.117220
  3. Gundupalli, M.P., Tantayotai, P., Panakkal, E.J., Chuetor, S., Kirdponpattara, S., Thomas, A.S.S., Sharma, B.K., Sriariyanun, M. (2022). Hydrothermal pretreatment optimization and deep eutectic solvent pretreatment of lignocellulosic biomass: An integrated approach. Bioresource Technology Reports, 17, 100957. DOI: 10.1016/j.biteb.2022.100957
  4. Zhang, Y., Ding, Z., Shahadat Hossain, M., Maurya, R., Yang, Y., Singh, V., Kumar, D., Salama, E.S., Sun, X., Sindhu, R., Binod, P., Zhang, Z., Kumar Awasthi, M. (2023). Recent advances in lignocellulosic and algal biomass pretreatment and its biorefinery approaches for biochemicals and bioenergy conversion. Bioresource Technology, 367, 128281. DOI: 10.1016/j.biortech.2022.128281
  5. Yaashikaa, P.R., Senthil Kumar, P., Varjani, S. (2022). Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review. Bioresource Technology, 343, 126126. DOI: 10.1016/j.biortech.2021.126126
  6. Basak, B., Kumar, R., Bharadwaj, A.V.S.L.S., Kim, T.H., Kim, J.R., Jang, M., Oh, S.E., Roh, H.S., Jeon, B.H. (2023). Advances in physicochemical pretreatment strategies for lignocellulose biomass and their effectiveness in bioconversion for biofuel production. Bioresource Technology, 369, 128413. DOI: 10.1016/j.biortech.2022.128413
  7. Saini, R., Singhania, R.R., Patel, A.K., Chen, C.W., Piechota, G., Dong, C. Di (2024). Sustainable production of cellulose and hemicellulose-derived oligosaccharides from pineapple leaves: Impact of hydrothermal pretreatment and controlled enzymatic hydrolysis. Bioresource Technology, 398, 130526. DOI: 10.1016/j.biortech.2024.130526
  8. Domínguez, E., Río, P.G. del, Romaní, A., Garrote, G., Domingues, L. (2021). Hemicellulosic Bioethanol Production from Fast-Growing Paulownia Biomass. Processes, 9(1), 173. DOI: 10.3390/pr9010173
  9. Peng, F., Peng, P., Xu, F., Sun, R.-C. (2012). Fractional purification and bioconversion of hemicelluloses. Biotechnology Advances, 30(4), 879–903. DOI: 10.1016/j.biotechadv.2012.01.018
  10. Gao, H., Wang, Y., Yang, Q., Peng, H., Li, Y., Zhan, D., Wei, H., Lu, H., Bakr, M.M.A., EI-Sheekh, M.M., Qi, Z., Peng, L., Lin, X. (2021). Combined steam explosion and optimized green-liquor pretreatments are effective for complete saccharification to maximize bioethanol production by reducing lignocellulose recalcitrance in one-year-old bamboo. Renewable Energy, 175, 1069–1079. DOI: 10.1016/j.renene.2021.05.016
  11. Felipe Hernández-Pérez, A., de Arruda, P.V., Sene, L., da Silva, S.S., Kumar Chandel, A., de Almeida Felipe, M. das G. (2019). Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries. Critical Reviews in Biotechnology, 39(7), 924–943. DOI: 10.1080/07388551.2019.1640658
  12. Feng, J., Techapun, C., Phimolsiripol, Y., Phongthai, S., Khemacheewakul, J., Taesuwan, S., Mahakuntha, C., Porninta, K., Htike, S.L., Kumar, A., Nunta, R., Sommanee, S., Leksawasdi, N. (2024). Utilization of agricultural wastes for co-production of xylitol, ethanol, and phenylacetylcarbinol: A review. Bioresource Technology, 392, 129926. DOI: 10.1016/j.biortech.2023.129926
  13. Clauser, N.M., Fit, C.G., Cardozo, R.E., Rivaldi, J.A., Felissia, F.E., Area, M.C., Vallejos, M.E. (2024). Technical, Economic and Environmental Assessment of Xylitol Production in a Biorefinery Platform Toward a Circular Economy. Sustainability, 16(10770), 1–21. DOI: 10.3390/su162310770Academic
  14. Wijaya, C., Sangadji, N.L., Muharja, M., Widjaja, T., Riadi, L., Widjaja, A. (2025). An integrated green fractionation of coconut husk: Hydrothermal and deep eutectic solvent pretreatment for enhanced sugar and lignin production. Bioresource Technology Reports, 29, 102078. DOI: 10.1016/j.biteb.2025.102078
  15. Vieira, F., Santana, E.P., Jesus, M., Santos, J., Pires, P., Vaz-velho, M., Silva, D.P., Ruzene, D.S. (2024). Coconut Waste : Discovering Sustainable Approaches to Advance a Circular Economy. Sustainability, 16(3066), 1–25. DOI: 10.3390/su16073066
  16. Mankar, A.R., Pandey, A., Pant, K.K. (2022). Microwave-assisted extraction of lignin from coconut coir using deep eutectic solvents and its valorization to aromatics. Bioresource Technology, 345, 126528. DOI: 10.1016/j.biortech.2021.126528
  17. Anuchi, S.O., Campbell, K.L.S., Hallett, J.P. (2022). Effective pretreatment of lignin-rich coconut wastes using a low-cost ionic liquid. Scientific Reports. 12(1), 1–11. DOI: 10.1038/s41598-022-09629-4
  18. Sun, S.C., Xu, Y., Ma, C.Y., Zhang, C., Zuo, C., Sun, D., Wen, J.L., Yuan, T.Q. (2023). Green and efficient fractionation of bamboo biomass via synergistic hydrothermal-alkaline deep eutectic solvents pretreatment: Valorization of carbohydrates. Renewable Energy, 217, 119175. DOI: 10.1016/j.renene.2023.119175
  19. Ismail, K.S.K., Matano, Y., Sakihama, Y., Inokuma, K., Nambu, Y., Hasunuma, T., Kondo, A. (2022). Pretreatment of extruded Napier grass by hydrothermal process with dilute sulfuric acid and fermentation using a cellulose-hydrolyzing and xylose-assimilating yeast for ethanol production. Bioresource Technology, 343, 126071 DOI: 10.1016/j.biortech.2021.126071
  20. Guo, H., Zhao, Y., Chang, J.S., Lee, D.J. (2022). Inhibitor formation and detoxification during lignocellulose biorefinery: A review. Bioresource Technology, 361, 127666. DOI: 10.1016/j.biortech.2022.127666
  21. Kininge, M.M., Gogate, P.R. (2022). Intensification of alkaline delignification of sugarcane bagasse using ultrasound assisted approach. Ultrasonics Sonochemistry, 82, 105870. DOI: 10.1016/j.ultsonch.2021.105870
  22. Zhang, R., Gao, H., Wang, Y., He, B., Lu, J., Zhu, W., Peng, L., Wang, Y. (2023). Challenges and perspectives of green-like lignocellulose pretreatments selectable for low-cost biofuels and high-value bioproduction. Bioresource Technology, 369, 128315. DOI: 10.1016/j.biortech.2022.128315
  23. Moodley, P., Sewsynker-Sukai, Y., Gueguim Kana, E.B. (2020). Progress in the development of alkali and metal salt catalysed lignocellulosic pretreatment regimes: Potential for bioethanol production. Bioresource Technology, 310, 123372. DOI: 10.1016/j.biortech.2020.123372
  24. Tang, W., Huang, C., Ling, Z., Lai, C., Yong, Q. (2022). Efficient utilization of waste wheat straw through humic acid and ferric chloride co-assisted hydrothermal pretreatment for fermentation to produce bioethanol. Bioresource Technology, 364, 128059. DOI: 10.1016/j.biortech.2022.128059
  25. Tang, W., Wu, X., Huang, C., Ling, Z., Lai, C., Yong, Q. (2021). Revealing the influence of metallic chlorides pretreatment on chemical structures of lignin and enzymatic hydrolysis of waste wheat straw. Bioresource Technology, 342, 125983. DOI: 10.1016/j.biortech.2021.125983
  26. Chen, W.-H., Nižetić, S., Sirohi, R., Huang, Z., Luque, R., M.Papadopoulos, A., Sakthivel, R., Phuong Nguyen, X., Tuan Hoang, A. (2022). Liquid hot water as sustainable biomass pretreatment technique for bioenergy production: A review. Bioresource Technology, 344, 126207. DOI: 10.1016/j.biortech.2021.126207
  27. Tang, W., Wu, X., Huang, C., Ling, Z., Lai, C., Yong, Q. (2021). Comprehensive understanding of the effects of metallic cations on enzymatic hydrolysis of humic acid-pretreated waste wheat straw. Biotechnology for Biofuels, 14(1), 25. DOI: 10.1186/s13068-021-01874-5
  28. Sangadji, N.L., Wijaya, C., Sangian, H.F., Widjaja, A. (2024). Optimization of Ultrasound-enhanced Subcritical Water Hydrolysis of Oil Palm Empty Fruit Bunch for the Production of Fermentable Sugar. Periodica Polytechnica Chemical Engineering, 68(2), 203–215. DOI: 10.3311/PPch.23183
  29. Zhu, W., Houtman, C.J., Zhu, J.Y., Gleisner, R., Chen, K.F. (2012). Quantitative predictions of bioconversion of aspen by dilute acid and SPORL pretreatments using a unified combined hydrolysis factor (CHF). Process Biochemistry, 47(5), 785–791. DOI: 10.1016/j.procbio.2012.02.012
  30. Springer, E.L. (1966). Hydrolysis of aspenwood xylan with aqueous solutions of hydrochloric acid. Tappi, 49(3), 102-106
  31. Jiang, X., Zhai, R., Li, H., Li, C., Deng, Q., Jin, M. (2023). Understanding acid hydrolysis of corn stover during densification pretreatment for quantitative predictions of enzymatic hydrolysis efficiency using modified pretreatment severity factor. Bioresource Technology, 386, 129487. DOI: 10.1016/j.biortech.2023.129487
  32. Ma, Q., Zhu, J., Gleisner, R., Yang, R., Zhu, J.Y. (2018). Valorization of Wheat Straw Using a Recyclable Hydrotrope at Low Temperatures (≤90 °C). ACS Sustainable Chemistry and Engineering, 6(11), 14480–14489. DOI: 10.1021/acssuschemeng.8b03135
  33. Huo, D., Sun, Y., Yang, Q., Zhang, F., Fang, G., Zhu, H., Liu, Y. (2023). Selective degradation of hemicellulose and lignin for improving enzymolysis efficiency via pretreatment using deep eutectic solvents. Bioresource Technology, 376, 128937. DOI: 10.1016/j.biortech.2023.128937
  34. Tang, Z., Wu, C., Tang, W., Huang, M., Ma, C., He, Y.-C. (2023). Enhancing enzymatic saccharification of sunflower straw through optimal tartaric acid hydrothermal pretreatment. Bioresource Technology, 385, 129279. DOI: 10.1016/j.biortech.2023.129279
  35. Sluiter, A. (2008). Determination of Structural Carbohydrates and Lignin in Biomass. Laboratory Analytical Procedure (LAP)/National Renewable Energy Laboratory
  36. Fatmawati, A., Nurtono, T., Widjaja, A. (2023). Thermogravimetric kinetic-based computation of raw and pretreated coconut husk powder lignocellulosic composition. Bioresource Technology Reports, 22, 101500. DOI: 10.1016/j.biteb.2023.101500
  37. Sangadji, N.L., Wijaya, C., Muharja, M., Sangian, H.F., Widjaja, A. (2024). Elevated enzymatic hydrolysis by optimization of ultrasonication pretreatment of oil palm empty fruit bunch for glucose production. Biomass Convers. Biorefin. 15, 16541–16551. DOI: 10.1007/s13399-024-06430-3
  38. Gong, W.H., Zhang, C., He, J.W., Gao, Y.Y., Li, Y.J., Zhu, M.Q., Wen, J.L. (2022). A synergistic hydrothermal-deep eutectic solvents (DES) pretreatment for acquiring xylooligosaccharides and lignin nanoparticles from Eucommia ulmoides wood. International Journal of Biological Macromolecules, 209, 188–197. DOI: 10.1016/j.ijbiomac.2022.04.008
  39. Ma, C.Y., Xu, L.H., Zhang, C., Guo, K.N., Yuan, T.Q., Wen, J.L. (2021). A synergistic hydrothermal-deep eutectic solvent (DES) pretreatment for rapid fractionation and targeted valorization of hemicelluloses and cellulose from poplar wood. Bioresource Technology, 341(July), 125828. DOI: 10.1016/j.biortech.2021.125828
  40. Kawamura, K., Sako, K., Ogata, T., Mine, T., Tanabe, K. (2020). Production of 5′-hydroxymethylfurfural by the hydrothermal treatment of cotton fabric wastes using a pilot-plant scale flow reactor. Bioresource Technology Reports, 11, 100476. DOI: 10.1016/j.biteb.2020.100476
  41. Sun, Z., Xie, Y., Wei, C., Wang, F., Zhang, Y., Song, F., Cui, H. (2023). Effect of salt addition on cellulose conversion into 5-hydroxymethylfurfural in metal chloride aqueous solution. Journal of Molecular Liquids, 383, 122132. DOI: 10.1016/j.molliq.2023.122132
  42. Gao, K., Chen, Y., Wang, H., Quan, X., Chu, J., Zhang, J. (2023). Production of Xylooligosaccharides and Monosaccharides from Switchgrass by FeCl3 Hydrolysis Combined with Sodium Perborate Pretreatment. Bioenergy Research, 16(4), 2242–2252. DOI: 10.1007/s12155-023-10573-y
  43. López-Linares, J.C., Romero, I., Moya, M., Cara, C., Ruiz, E., Castro, E. (2013). Pretreatment of olive tree biomass with FeCl3 prior enzymatic hydrolysis. Bioresource Technology, 128, 180–187. DOI: 10.1016/j.biortech.2012.10.076
  44. Østby, H., Várnai, A. (2023). Hemicellulolytic enzymes in lignocellulose processing. Essays in Biochemistry, 67(3), 533–550. DOI: 10.1042/EBC20220154
  45. Zhang, X., Zhang, W., Lei, F., Yang, S., Jiang, J. (2020). Coproduction of xylooligosaccharides and fermentable sugars from sugarcane bagasse by seawater hydrothermal pretreatment. Bioresource Technology, 309, 123385. DOI: 10.1016/j.biortech.2020.123385
  46. Huang, K., Das, L., Guo, J., Xu, Y. (2019). Catalytic valorization of hardwood for enhanced xylose-hydrolysate recovery and cellulose enzymatic efficiency via synergistic effect of Fe3+ and acetic acid. Biotechnology for Biofuels, 12(1). DOI: 10.1186/s13068-019-1587-4
  47. Kumar, B., Bhardwaj, N., Verma, P. (2019). Pretreatment of rice straw using microwave assisted FeCl3-H3PO4 system for ethanol and oligosaccharides generation. Bioresource Technology Reports, 7, 100295. DOI: 10.1016/j.biteb.2019.100295
  48. Zhu, L., Tang, W., Ma, C., He, Y.-C. (2023). Efficient co-production of reducing sugars and xylooligosaccharides via clean hydrothermal pretreatment of rape straw. Bioresource Technology, 388, 129727. DOI: 10.1016/j.biortech.2023.129727
  49. Yue, P., Hu, Y., Tian, R., Bian, J., Peng, F. (2022). Hydrothermal pretreatment for the production of oligosaccharides: A review. Bioresour. Technol. 343. 126075. DOI: 10.1016/j.biortech.2021.126075
  50. Freitas, V., Paez, A., Fongarland, P., Philippe, R., Vilcocq, L. (2023). Catalytic hydrogenation of hemicellulosic sugars: reaction kinetics and influence of sugar structure on reaction rate, ChemCatChem, 15, 13, e202300263. DOI: 10.1002/cctc.202300263
  51. Zhao, J., Li, J., Qi, G., Sun, X.S., Wang, D. (2021). Two Nonnegligible Factors Influencing Lignocellulosic Biomass Valorization: Filtration Method after Pretreatment and Solid Loading during Enzymatic Hydrolysis. Energy and Fuels, 35 (2), 1546–1556. DOI: 10.1021/acs.energyfuels.0c03876
  52. Xia, Q., Liu, Y., Meng, J., Cheng, W., Chen, W., Liu, S., Liu, Y., Li, J., Yu, H. (2018). Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass. Green Chemistry, 20(12), 2711–2721. DOI: 10.1039/c8gc00900g
  53. Kamireddy, S.R., Li, J., Tucker, M., Degenstein, J., Ji, Y. (2013). Effects and Mechanism of Metal Chloride Salts on Pretreatment and Enzymatic Digestibility of Corn Stover. Industrial & Engineering Chemistry Research, 52(5), 1775–1782. DOI: 10.1021/ie3019609
  54. Lu, X., Gu, X., Shi, Y. (2022). A review on lignin antioxidants: Their sources, isolations, antioxidant activities and various applications. Int. J. Biol. Macromol. 210, 716–741. DOI: 10.1016/j.ijbiomac.2022.04.228
  55. Hong, S., Sun, X., Lian, H., Pojman, J.A., Mota‐Morales, J.D. (2020). Zinc chloride/acetamide deep eutectic solvent‐mediated fractionation of lignin produces high‐ and low‐molecular‐weight fillers for phenol‐formaldehyde resins. Journal of Applied Polymer Science, 137 (7), 48385. DOI: 10.1002/app.48385
  56. Wang, R., Wang, K., Zhou, M., Xu, J., Jiang, J. (2021). Efficient fractionation of moso bamboo by synergistic hydrothermal-deep eutectic solvents pretreatment. Bioresource Technology, 328 (January), 124873. DOI: 10.1016/j.biortech.2021.124873
  57. Huo, D., Sun, Y., Yang, Q., Zhang, F., Fang, G., Zhu, H., Liu, Y. (2023). Selective degradation of hemicellulose and lignin for improving enzymolysis efficiency via pretreatment using deep eutectic solvents. Bioresource Technology, 376, 128937. DOI: 10.1016/j.biortech.2023.128937
  58. Kamireddy, S.R., Li, J., Tucker, M., Degenstein, J., Ji, Y. (2013). Effects and mechanism of metal chloride salts on pretreatment and enzymatic digestibility of corn stover. Industrial and Engineering Chemistry Research, 52(5), 1775–1782. DOI: 10.1021/ie3019609
  59. Ji, H., Song, Y., Zhang, X., Tan, T. (2017). Using a combined hydrolysis factor to balance enzymatic saccharification and the structural characteristics of lignin during pretreatment of Hybrid poplar with a fully recyclable solid acid. Bioresource Technology, 238, 575–581. DOI: 10.1016/j.biortech.2017.04.092
  60. Zhou, M., Lv, M., Cai, S., Tian, X. (2023). Effects of enzymatic hydrolysis and physicochemical properties of lignocellulose waste through different choline based deep eutectic solvents (DESs) pretreatment. Industrial Crops and Products, 195, 116435. DOI: 10.1016/j.indcrop.2023.116435
  61. Shen, X.J., Wen, J.L., Mei, Q.Q., Chen, X., Sun, D., Yuan, T.Q., Sun, R.C. (2019). Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chemistry, 21(2), 275–283. DOI: 10.1039/c8gc03064b
  62. Jose, S., Sajeena Beevi, B. (2023). Optimization of ultrasonication assisted alkaline delignification of coir pith using response surface methodology. Bioresource Technology Reports, 21. 101330. DOI: 10.1016/j.biteb.2023.101330
  63. Sunar, S.L., Oruganti, R.K., Bhattacharyya, D., Shee, D., Panda, T.K. (2024). Deep eutectic solvent pretreatment of sugarcane bagasse for efficient lignin recovery and enhanced enzymatic hydrolysis. Journal of Industrial and Engineering Chemistry. 139, 539-553. DOI: 10.1016/j.jiec.2024.05.030
  64. Xu, H., Che, X., Ding, Y., Kong, Y., Li, B., Tian, W. (2019). Effect of crystallinity on pretreatment and enzymatic hydrolysis of lignocellulosic biomass based on multivariate analysis. Bioresource Technology, 279, 271–280. DOI: 10.1016/j.biortech.2018.12.096
  65. Shen, B., Hou, S., Jia, Y., Yang, C., Su, Y., Ling, Z., Huang, C., Lai, C., Yong, Q. (2021). Synergistic effects of hydrothermal and deep eutectic solvent pretreatment on co-production of xylo-oligosaccharides and enzymatic hydrolysis of poplar. Bioresource Technology, 341(July), 125787. DOI: 10.1016/j.biortech.2021.125787
  66. Ruiz, H.A., Sganzerla, W.G., Larnaudie, V., Veersma, R.J., van Erven, G., Shiva, Ríos-González, L.J., Rodríguez-Jasso, R.M., Rosero-Chasoy, G., Ferrari, M.D., Kabel, M.A., Forster-Carneiro, T., Lareo, C. (2023). Advances in process design, techno-economic assessment and environmental aspects for hydrothermal pretreatment in the fractionation of biomass under biorefinery concept. Bioresour. Technol. 369. 128469. DOI: 10.1016/j.biortech.2022.128469
  67. Gandam, P.K., Chinta, M.L., Pabbathi, N.P.P., Baadhe, R.R., Sharma, M., Thakur, V.K., Sharma, G.D., Ranjitha, J., Gupta, V.K. (2022). Second-generation bioethanol production from corncob – A comprehensive review on pretreatment and bioconversion strategies, including techno-economic and lifecycle perspective. Industrial Crops and Products, 186, 115245. DOI: 10.1016/j.indcrop.2022.115245
  68. Neves, P. V., Pitarelo, A.P., Ramos, L.P. (2016). Production of cellulosic ethanol from sugarcane bagasse by steam explosion: Effect of extractives content, acid catalysis and different fermentation technologies. Bioresource Technology, 208, 184–194. DOI: 10.1016/j.biortech.2016.02.085
  69. Sarker, T.R., Pattnaik, F., Nanda, S., Dalai, A.K., Meda, V., Naik, S. (2021). Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis. Chemosphere, 284, 131372. DOI: 10.1016/j.chemosphere.2021.131372
  70. Prado, J.M., Forster-Carneiro, T., Rostagno, M.A., Follegatti-Romero, L.A., Maugeri Filho, F., Meireles, M.A.A. (2014). Obtaining sugars from coconut husk, defatted grape seed, and pressed palm fiber by hydrolysis with subcritical water. Journal of Supercritical Fluids, 89, 89–98. DOI: 10.1016/j.supflu.2014.02.017
  71. Ren, Y., Si, B., Liu, Z., Jiang, W., Zhang, Y. (2022). Promoting dark fermentation for biohydrogen production: Potential roles of iron-based additives. International Journal of Hydrogen Energy, 47(3), 1499–1515. DOI: 10.1016/j.ijhydene.2021.10.137
  72. Singh, A., Tsai, M.L., Chen, C.W., Rani Singhania, R., Kumar Patel, A., Tambat, V., Dong, C. Di, (2023). Role of hydrothermal pretreatment towards sustainable biorefinery. Bioresource Technology, 367, 128271. DOI: 10.1016/j.biortech.2022.128271
  73. Muharja, M., Umam, D.K., Pertiwi, D., Zuhdan, J., Nurtono, T., Widjaja, A. (2019). Enhancement of sugar production from coconut husk based on the impact of the combination of surfactant-assisted subcritical water and enzymatic hydrolysis. Bioresource Technology, 274(November 2018), 89–96. DOI: 10.1016/j.biortech.2018.11.074
  74. Xiong, H., Liu, Y., Xu, Q. (2020). Effect of sodium dodecyl sulfate on the production of L-isoleucine by the fermentation of Corynebacterium glutamicum. Bioengineered, 11(1), 1124–1136. DOI: 10.1080/21655979.2020.1831364
  75. Peng, J., Xu, H., Wang, W., Kong, Y., Su, Z., Li, B. (2021). Techno-economic analysis of bioethanol preparation process via deep eutectic solvent pretreatment. Industrial Crops and Products, 172, 114036. DOI: 10.1016/j.indcrop.2021.114036
  76. Zhang, J., Fan, C., Zang, L. (2017). Improvement of hydrogen production from glucose by ferrous iron and biochar. Bioresource Technology, 245 (September), 98–105. DOI: 10.1016/j.biortech.2017.08.198

Last update:

No citation recorded.

Last update:

No citation recorded.